Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
1,447
result(s) for
"Weller, R."
Sort by:
Natural new particle formation at the coastal Antarctic site Neumayer
2015
We measured condensation particle (CP) concentrations and particle size distributions at the coastal Antarctic station Neumayer (70°39´ S, 8°15´ W) during two summer campaigns (from 20 January to 26 March 2012 and 1 February to 30 April 2014) and during the polar night between 12 August and 27 September 2014 in the particle diameter (Dp) range from 2.94 to 60.4 nm (2012) and from 6.26 to 212.9 nm (2014). During both summer campaigns we identified all in all 44 new particle formation (NPF) events. From 10 NPF events, particle growth rates could be determined to be around 0.90 ± 0.46 nm h−1 (mean ± SD; range: 0.4–1.9 nm h−1). With the exception of one case, particle growth was generally restricted to the nucleation mode (Dp < 25 nm) and the duration of NPF events was typically around 6.0 ± 1.5 h (mean ± SD; range: 4–9 h). Thus, in the surrounding area of Neumayer, particles did not grow up to sizes required for acting as cloud condensation nuclei. NPF during summer usually occurred in the afternoon in coherence with local photochemistry. During winter, two NPF events could be detected, though showing no ascertainable particle growth. A simple estimation indicated that apart from sulfuric acid, the derived growth rates required other low volatile precursor vapours.
Journal Article
Is late-life dependency increasing or not? A comparison of the Cognitive Function and Ageing Studies (CFAS)
2017
Little is known about how the proportions of dependency states have changed between generational cohorts of older people. We aimed to estimate years lived in different dependency states at age 65 years in 1991 and 2011, and new projections of future demand for care.
In this population-based study, we compared two Cognitive Function and Ageing Studies (CFAS I and CFAS II) of older people (aged ≥65 years) who were permanently registered with a general practice in three defined geographical areas (Cambridgeshire, Newcastle, and Nottingham; UK). These studies were done two decades apart (1991 and 2011). General practices provided lists of individuals to be contacted and were asked to exclude those who had died or might die over the next month. Baseline interviews were done in the community and care homes. Participants were stratified by age, and interviews occurred only after written informed consent was obtained. Information collected included basic sociodemographics, cognitive status, urinary incontinence, and self-reported ability to do activities of daily living. CFAS I was assigned as the 1991 cohort and CFAS II as the 2011 cohort, and both studies provided prevalence estimates of dependency in four states: high dependency (24-h care), medium dependency (daily care), low dependency (less than daily), and independent. Years in each dependency state were calculated by Sullivan's method. To project future demands for social care, the proportions in each dependency state (by age group and sex) were applied to the 2014 England population projections.
Between 1991 and 2011, there were significant increases in years lived from age 65 years with low dependency (1·7 years [95% CI 1·0–2·4] for men and 2·4 years [1·8–3·1] for women) and increases with high dependency (0·9 years [0·2–1·7] for men and 1·3 years [0·5–2·1] for women). The majority of men's extra years of life were spent independent (36·3%) or with low dependency (36·3%) whereas for women the majority were spent with low dependency (58·0%), and only 4·8% were independent. There were substantial reductions in the proportions with medium and high dependency who lived in care homes, although, if these dependency and care home proportions remain constant in the future, further population ageing will require an extra 71 215 care home places by 2025.
On average older men now spend 2·4 years and women 3·0 years with substantial care needs, and most will live in the community. These findings have considerable implications for families of older people who provide the majority of unpaid care, but the findings also provide valuable new information for governments and care providers planning the resources and funding required for the care of their future ageing populations.
Medical Research Council (G9901400) and (G06010220), with support from the National Institute for Health Research Comprehensive Local research networks in West Anglia and Trent, UK, and Neurodegenerative Disease Research Network in Newcastle, UK.
Journal Article
The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms, and field operations
2011
The VAMOS1 Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument payloads and key mission strategies for these platforms and give a summary of the missions conducted. 1 Variability of the American Monsoon Systems, an international CLIVAR program.
Journal Article
Moored Observations of the Surface Meteorology and Air–Sea Fluxes in the Northern Bay of Bengal in 2015
2019
Time series of surface meteorology and air–sea fluxes from the northern Bay of Bengal are analyzed, quantifying annual and seasonal means, variability, and the potential for surface fluxes to contribute significantly to variability in surface temperature and salinity. Strong signals were associated with solar insolation and its modulation by cloud cover, and, in the 5- to 50-day range, with intraseasonal oscillations (ISOs). The northeast (NE) monsoon (DJF) was typically cloud free, with strong latent heat loss and several moderate wind events, and had the only seasonal mean ocean heat loss. The spring intermonsoon (MAM) was cloud free and had light winds and the strongest ocean heating. Strong ISOs and Tropical Cyclone Komen were seen in the southwest (SW) monsoon (JJA), when 65% of the 2.2-m total rain fell, and oceanic mean heating was small. The fall intermonsoon (SON) initially had moderate convective systems and mean ocean heating, with a transition to drier winds and mean ocean heat loss in the last month. Observed surface freshwater flux applied to a layer of the observed thickness produced drops in salinity with timing and magnitude similar to the initial drops in salinity in the summer monsoon, but did not reproduce the salinity variability of the fall intermonsoon. Observed surface heat flux has the potential to cause the temperature trends of the different seasons, but uncertainty in how shortwave radiation is absorbed in the upper ocean limits quantifying the role of surface forcing in the evolution of mixed layer temperature.
Journal Article
Computational model for nanocarrier binding to endothelium validated using in vivo, in vitro, and atomic force microscopy experiments
2010
A computational methodology based on Metropolis Monte Carlo (MC) and the weighted histogram analysis method (WHAM) has been developed to calculate the absolute binding free energy between functionalized nanocarriers (NC) and endothelial cell (EC) surfaces. The calculated NC binding free energy landscapes yield binding affinities that agree quantitatively when directly compared against analogous measurements of specific antibody-coated NCs (100 nm in diameter) to intracellular adhesion molecule-1 (ICAM-1) expressing EC surface in in vitro cell-culture experiments. The effect of antibody surface coverage (σ s ) of NC on binding simulations reveals a threshold σ s value below which the NC binding affinities reduce drastically and drop lower than that of single anti-ICAM-1 molecule to ICAM-1. The model suggests that the dominant effect of changing σ s around the threshold is through a change in multivalent interactions; however, the loss in translational and rotational entropies are also important. Consideration of shear flow and glycocalyx does not alter the computed threshold of antibody surface coverage. The computed trend describing the effect of σ s on NC binding agrees remarkably well with experimental results of in vivo targeting of the anti-ICAM-1 coated NCs to pulmonary endothelium in mice. Model results are further validated through close agreement between computed NC rupture-force distribution and measured values in atomic force microscopy (AFM) experiments. The three-way quantitative agreement with AFM, in vitro (cell-culture), and in vivo experiments establishes the mechanical, thermodynamic, and physiological consistency of our model. Hence, our computational protocol represents a quantitative and predictive approach for model-driven design and optimization of functionalized nanocarriers in targeted vascular drug delivery.
Journal Article
Characterization of long-term and seasonal variations of black carbon (BC) concentrations at Neumayer, Antarctica
2013
Continuous black carbon (BC) observations were conducted from 1999 through 2009 by an Aethalometer (AE10) and from 2006 through 2011 by a Multi-Angle Absorption Photometer (MAAP) at Neumayer Station (NM) under stringent contamination control. Considering the respective observation period, BC concentrations measured by the MAAP were somewhat higher (median ± standard deviation: 2.1 ± 2.0 ng m−3) compared to the AE10 results (1.6 ± 2.1 ng m−3). Neither for the AE10 nor for the MAAP data set a significant long-term trend could be detected. Consistently a pronounced seasonality was observed with both instruments showing a primary annual maximum between October and November and a minimum in April with a maximum/minimum ratio of 4.5/1.6 = 3.8 and 2.7/0.64 = 4.2 for the MAAP and AE10 data, respectively. Occasionally a secondary summer maximum in January/February was visible. With the aim to assess the impact of BC on optical properties of the aerosol at NM, we evaluated the BC data along with particle scattering coefficients measured by an integrating nephelometer. We found the mean single scattering albedo of ω550 = 0.992 ± 0.0090 (median: 0.994) at a wavelength of 550 nm with a range of values from 0.95 to 1.0.
Journal Article
One year of aerosol refractive index measurement from a coastal Antarctic site
by
Jurányi, Zsófia
,
Weller, Rolf
in
Advection
,
Advection (Earth sciences)
,
Aerosol optical properties
2019
Though the environmental conditions of the Weddell Sea region and Dronning Maud Land are still relatively stable compared to the fast-changing Antarctic Peninsula, we may suspect pronounced effects of global climate change for the near future (Thompson et al., 2011). Reducing the uncertainties in climate change modeling requires a better understanding of the aerosol optical properties, and for this we need accurate data on the aerosol refractive index (RI). Due to the remoteness of Antarctica only very few RI data are available from this region (Hogan et al., 1979; Virkkula et al., 2006; Shepherd et al., 2018). We calculate the real refractive index of natural atmospheric aerosols from number size distribution measurements at the German coastal Antarctic station Neumayer III. Given the high average scattering albedo of 0.992 (Weller et al., 2013), we assumed that the imaginary part of the RI is zero. Our method uses the overlapping size range (particle diameter D between 120 and 340 nm) of a scanning mobility particle sizer (SMPS), which sizes the particles by their electrical mobility, and a laser aerosol spectrometer (LAS), which sizes the particles by their optical scattering signal at the 633 nm wavelength. Based on almost a complete year of measurement, the average effective refractive index (RIeff, as we call our retrieved RI because of the used assumptions) for the dry aerosol particles turned out to be 1.44 with a standard deviation of 0.08, in a good agreement with the RI value of 1.47, which we derived from the chemical composition of bulk aerosol sampling measurements. At Neumayer the aerosol shows a pronounced seasonal pattern in both number concentration and chemical composition. Despite this, the variability of the monthly averaged RIeff values remained between 1.40 and 1.50. Compared to the annual mean, two austral winter months (July and September) showed slightly but significantly increased values (1.50 and 1.47, respectively). The size dependency of the RIeff could be determined from time-averaged LAS and SMPS number size distributions measured between December 2017 and January 2018. Here we calculated RIeff for four different particle size ranges and observed a slight decrease from 1.47 (D range 116–168 nm) to 1.37 (D range 346–478 nm). We find no significant dependence of the derived RIeff values on the wind direction. Thus we conclude that RIeff is largely independent of the general weather situation, roughly classified as (i) advection of marine boundary layer air masses during easterly winds caused by passing cyclones in contrast to (ii) air mass transport from continental Antarctica under southern katabatic winds. Neumayer, the only relevant contamination source, is located 1.5 km north of the air chemistry observatory, where the measurements were performed. Given that northerly winds are almost absent, the potential impact of local contamination is minimized in general. Indeed our data show no impact of local contamination on RIeff. Just in one case a temporary high-contamination episode with diesel engines operating right next to the measurement site resulted in an unusual high RIeff of 1.59, probably caused by the high black carbon content of the exhaust fumes. To conclude, our study revealed largely constant RIeff values throughout the year without any sign of seasonality. Therefore, it seems reasonable to use a single, constant RIeff value of 1.44 for modeling optical properties of natural, coastal Antarctic sub-micrometer aerosol.
Journal Article
Circulation, eddies, oxygen, and nutrient changes in the eastern tropical South Pacific Ocean
2015
A large subsurface oxygen deficiency zone is located in the eastern tropical South Pacific Ocean (ETSP). The large-scale circulation in the eastern equatorial Pacific and off the coast of Peru in November/December 2012 shows the influence of the equatorial current system, the eastern boundary currents, and the northern reaches of the subtropical gyre. In November 2012 the equatorial undercurrent (EUC) is centered at 250 m depth, deeper than in earlier observations. In December 2012, the equatorial water is transported southeastward near the shelf in the Peru–Chile undercurrent (PCUC) with a mean transport of 1.4 Sv. In the oxygen minimum zone (OMZ), the flow is overlaid with strong eddy activity on the poleward side of the OMZ. Floats with parking depth at 400 m show fast westward flow in the mid-depth equatorial channel and sluggish flow in the OMZ. Floats with oxygen sensors clearly show the passage of eddies with oxygen anomalies. The long-term float observations in the upper ocean lead to a net community production estimate at about 18° S of up to 16.7 mmol C m−3 yr−1 extrapolated to an annual rate and 7.7 mmol C m−3 yr−1 for the time period below the mixed layer. Oxygen differences between repeated ship sections are influenced by the Interdecadal Pacific Oscillation (IPO), by the phase of El Niño, by seasonal changes, and by eddies, and hence have to be interpreted with care. At and south of the Equator the decrease in oxygen in the upper ocean since 1976 is related to an increase in nitrate, phosphate, and in part silicate.
Journal Article