Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
34
result(s) for
"Wen, Chenglu"
Sort by:
Intensity Thresholding and Deep Learning Based Lane Marking Extraction and Lane Width Estimation from Mobile Light Detection and Ranging (LiDAR) Point Clouds
2020
Lane markings are one of the essential elements of road information, which is useful for a wide range of transportation applications. Several studies have been conducted to extract lane markings through intensity thresholding of Light Detection and Ranging (LiDAR) point clouds acquired by mobile mapping systems (MMS). This paper proposes an intensity thresholding strategy using unsupervised intensity normalization and a deep learning strategy using automatically labeled training data for lane marking extraction. For comparative evaluation, original intensity thresholding and deep learning using manually established labels strategies are also implemented. A pavement surface-based assessment of lane marking extraction by the four strategies is conducted in asphalt and concrete pavement areas covered by MMS equipped with multiple LiDAR scanners. Additionally, the extracted lane markings are used for lane width estimation and reporting lane marking gaps along various highways. The normalized intensity thresholding leads to a better lane marking extraction with an F1-score of 78.9% in comparison to the original intensity thresholding with an F1-score of 72.3%. On the other hand, the deep learning model trained with automatically generated labels achieves a higher F1-score of 85.9% than the one trained on manually established labels with an F1-score of 75.1%. In concrete pavement area, the normalized intensity thresholding and both deep learning strategies obtain better lane marking extraction (i.e., lane markings along longer segments of the highway have been extracted) than the original intensity thresholding approach. For the lane width results, more estimates are observed, especially in areas with poor edge lane marking, using the two deep learning models when compared with the intensity thresholding strategies due to the higher recall rates for the former. The outcome of the proposed strategies is used to develop a framework for reporting lane marking gap regions, which can be subsequently visualized in RGB imagery to identify their cause.
Journal Article
Automated Visual Recognizability Evaluation of Traffic Sign Based on 3D LiDAR Point Clouds
2019
Maintaining the high visual recognizability of traffic signs for traffic safety is a key matter for road network management. Mobile Laser Scanning (MLS) systems provide efficient way of 3D measurement over large-scale traffic environment. This paper presents a quantitative visual recognizability evaluation method for traffic signs in large-scale traffic environment based on traffic recognition theory and MLS 3D point clouds. We first propose the Visibility Evaluation Model (VEM) to quantitatively describe the visibility of traffic sign from any given viewpoint, then we proposed the concept of visual recognizability field and Traffic Sign Visual Recognizability Evaluation Model (TSVREM) to measure the visual recognizability of a traffic sign. Finally, we present an automatic TSVREM calculation algorithm for MLS 3D point clouds. Experimental results on real MLS 3D point clouds show that the proposed method is feasible and efficient.
Journal Article
BLNet: Bidirectional learning network for point clouds
by
Wang, Cheng
,
Wen, Chenglu
,
Han, Wenkai
in
Artificial Intelligence
,
Computer Graphics
,
Computer Science
2022
The key challenge in processing point clouds lies in the inherent lack of ordering and irregularity of the 3D points. By relying on perpoint multi-layer perceptions (MLPs), most existing point-based approaches only address the first issue yet ignore the second one. Directly convolving kernels with irregular points will result in loss of shape information. This paper introduces a novel point-based
bidirectional learning network
(BLNet) to analyze irregular 3D points. BLNet optimizes the learning of 3D points through two iterative operations: feature-guided point shifting and feature learning from shifted points, so as to minimise intra-class variances, leading to a more regular distribution. On the other hand, explicitly modeling point positions leads to a new feature encoding with increased structure-awareness. Then, an attention pooling unit selectively combines important features. This bidirectional learning alternately regularizes the point cloud and learns its geometric features, with these two procedures iteratively promoting each other for more effective feature learning. Experiments show that BLNet is able to learn deep point features robustly and efficiently, and outperforms the prior state-of-the-art on multiple challenging tasks.
Journal Article
A Weakly Supervised Vehicle Detection Method from LiDAR Point Clouds
2024
Training LiDAR point clouds object detectors requires a significant amount of annotated data, which is time-consuming and effort-demanding. Although weakly supervised 3D LiDAR-based methods have been proposed to reduce the annotation cost, their performance could be further improved. In this work, we propose a weakly supervised LiDAR-based point clouds vehicle detector that does not require any labels for the proposal generation stage and needs only a few labels for the refinement stage. It comprises two primary modules. The first is an unsupervised proposal generation module based on the geometry of point clouds. The second is the pseudo-label refinement module. We validate our method on two point clouds based object detection datasets, namely KITTI and ONCE, and compare it with various existing weakly supervised point clouds object detection methods. The experimental results demonstrate the method’s effectiveness with a small amount of labeled LiDAR point clouds.
Journal Article
MOBILE LASER SCANNING SYSTEMS FOR GPS/GNSS-DENIED ENVIRONMENT MAPPING
Indoor 3D mapping provides a useful three-dimensional structure via an indoor map for many applications. To acquire highly efficient and relatively accurate mapping for large-scale GPS/GNSS-denied scene, we present an upgraded backpacked laser scanning system and a car-mounted indoor mobile laser scanning system. The systems provide both 3D laser scanning point cloud and camera images. In this paper, a simultaneous extrinsic calibration approach for multiple multi-beam LIDAR and multiple cameras is also proposed using the Simultaneous Localization and Mapping (SLAM)-based algorithm. The proposed approach uses the SLAM-based algorithm to achieve a large calibration scene using mobile platforms, registers an acquired multi-beam LIDAR point cloud to the terrestrial LIDAR point cloud to acquire denser points for corner feature extraction, and finally achieves simultaneous calibration. With the proposed mapping and calibration algorithms, we can provide centimetre-lever coloured point cloud with relatively high efficiency and accuracy.
Journal Article
HiSC4D: Human-centered interaction and 4D Scene Capture in Large-scale Space Using Wearable IMUs and LiDAR
2024
We introduce HiSC4D, a novel Human-centered interaction and 4D Scene Capture method, aimed at accurately and efficiently creating a dynamic digital world, containing large-scale indoor-outdoor scenes, diverse human motions, rich human-human interactions, and human-environment interactions. By utilizing body-mounted IMUs and a head-mounted LiDAR, HiSC4D can capture egocentric human motions in unconstrained space without the need for external devices and pre-built maps. This affords great flexibility and accessibility for human-centered interaction and 4D scene capturing in various environments. Taking into account that IMUs can capture human spatially unrestricted poses but are prone to drifting for long-period using, and while LiDAR is stable for global localization but rough for local positions and orientations, HiSC4D employs a joint optimization method, harmonizing all sensors and utilizing environment cues, yielding promising results for long-term capture in large scenes. To promote research of egocentric human interaction in large scenes and facilitate downstream tasks, we also present a dataset, containing 8 sequences in 4 large scenes (200 to 5,000 \\(m^2\\)), providing 36k frames of accurate 4D human motions with SMPL annotations and dynamic scenes, 31k frames of cropped human point clouds, and scene mesh of the environment. A variety of scenarios, such as the basketball gym and commercial street, alongside challenging human motions, such as daily greeting, one-on-one basketball playing, and tour guiding, demonstrate the effectiveness and the generalization ability of HiSC4D. The dataset and code will be publicated on www.lidarhumanmotion.net/hisc4d available for research purposes.
Solar Powered Automatic Controlled Advertising Light Box System
2011
This paper introduces a solar powered automatic controlled advertising light box system functioning box rotation and poster cycling displaying of each panel, which overcomes the disadvantages of ordinary advertising light boxes of humdrum displaying and high energy consumption. The system includes three parts which are box rotation system, poster scrolling system and single-axis sun tracking system which can improve the solar energy efficiency and reduce energy consumption. Sun tracking system which effectively combined the sun angle tracking and photoelectric tracking method can automatically switch between the work mode and hibernate mode according to time and weather condition so as to maximize energy efficiency. A hierarchical control strategy which contained main control system and sun tracking system is adopted to control light box rotation, panel displaying and sun tracking at the same time. The solar advertising light box system was verified by tests that with the hierarchical control strategy the power generated by solar panel increased 38.2% than fixed panel. Experiment results show that the light box works stably and has potential to apply under the situations where cable laying is not convenient.
Journal Article
AdaCo: Overcoming Visual Foundation Model Noise in 3D Semantic Segmentation via Adaptive Label Correction
2024
Recently, Visual Foundation Models (VFMs) have shown a remarkable generalization performance in 3D perception tasks. However, their effectiveness in large-scale outdoor datasets remains constrained by the scarcity of accurate supervision signals, the extensive noise caused by variable outdoor conditions, and the abundance of unknown objects. In this work, we propose a novel label-free learning method, Adaptive Label Correction (AdaCo), for 3D semantic segmentation. AdaCo first introduces the Cross-modal Label Generation Module (CLGM), providing cross-modal supervision with the formidable interpretive capabilities of the VFMs. Subsequently, AdaCo incorporates the Adaptive Noise Corrector (ANC), updating and adjusting the noisy samples within this supervision iteratively during training. Moreover, we develop an Adaptive Robust Loss (ARL) function to modulate each sample's sensitivity to noisy supervision, preventing potential underfitting issues associated with robust loss. Our proposed AdaCo can effectively mitigate the performance limitations of label-free learning networks in 3D semantic segmentation tasks. Extensive experiments on two outdoor benchmark datasets highlight the superior performance of our method.
Mining and Transferring Feature-Geometry Coherence for Unsupervised Point Cloud Registration
2024
Point cloud registration, a fundamental task in 3D vision, has achieved remarkable success with learning-based methods in outdoor environments. Unsupervised outdoor point cloud registration methods have recently emerged to circumvent the need for costly pose annotations. However, they fail to establish reliable optimization objectives for unsupervised training, either relying on overly strong geometric assumptions, or suffering from poor-quality pseudo-labels due to inadequate integration of low-level geometric and high-level contextual information. We have observed that in the feature space, latent new inlier correspondences tend to cluster around respective positive anchors that summarize features of existing inliers. Motivated by this observation, we propose a novel unsupervised registration method termed INTEGER to incorporate high-level contextual information for reliable pseudo-label mining. Specifically, we propose the Feature-Geometry Coherence Mining module to dynamically adapt the teacher for each mini-batch of data during training and discover reliable pseudo-labels by considering both high-level feature representations and low-level geometric cues. Furthermore, we propose Anchor-Based Contrastive Learning to facilitate contrastive learning with anchors for a robust feature space. Lastly, we introduce a Mixed-Density Student to learn density-invariant features, addressing challenges related to density variation and low overlap in the outdoor scenario. Extensive experiments on KITTI and nuScenes datasets demonstrate that our INTEGER achieves competitive performance in terms of accuracy and generalizability.
GAGS: Granularity-Aware Feature Distillation for Language Gaussian Splatting
by
Liu, Yuan
,
Wen, Chenglu
,
Peng, Yuning
in
Feature extraction
,
Image segmentation
,
Scene analysis
2024
3D open-vocabulary scene understanding, which accurately perceives complex semantic properties of objects in space, has gained significant attention in recent years. In this paper, we propose GAGS, a framework that distills 2D CLIP features into 3D Gaussian splatting, enabling open-vocabulary queries for renderings on arbitrary viewpoints. The main challenge of distilling 2D features for 3D fields lies in the multiview inconsistency of extracted 2D features, which provides unstable supervision for the 3D feature field. GAGS addresses this challenge with two novel strategies. First, GAGS associates the prompt point density of SAM with the camera distances, which significantly improves the multiview consistency of segmentation results. Second, GAGS further decodes a granularity factor to guide the distillation process and this granularity factor can be learned in a unsupervised manner to only select the multiview consistent 2D features in the distillation process. Experimental results on two datasets demonstrate significant performance and stability improvements of GAGS in visual grounding and semantic segmentation, with an inference speed 2\\(\\times\\) faster than baseline methods. The code and additional results are available at https://pz0826.github.io/GAGS-Webpage/ .