Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
92 result(s) for "Wen, Shihui"
Sort by:
Advances in highly doped upconversion nanoparticles
Lanthanide-doped upconversion nanoparticles (UCNPs) are capable of converting near-infra-red excitation into visible and ultraviolet emission. Their unique optical properties have advanced a broad range of applications, such as fluorescent microscopy, deep-tissue bioimaging, nanomedicine, optogenetics, security labelling and volumetric display. However, the constraint of concentration quenching on upconversion luminescence has hampered the nanoscience community to develop bright UCNPs with a large number of dopants. This review surveys recent advances in developing highly doped UCNPs, highlights the strategies that bypass the concentration quenching effect, and discusses new optical properties as well as emerging applications enabled by these nanoparticles.
Activation of the surface dark-layer to enhance upconversion in a thermal field
Thermal quenching, in which light emission experiences a loss with increasing temperature, broadly limits luminescent efficiency at higher temperature in optical materials, such as lighting phosphors1–3 and fluorescent probes4–6. Thermal quenching is commonly caused by the increased activity of phonons that leverages the non-radiative relaxation pathways. Here, we report a kind of heat-favourable phonons existing at the surface of lanthanide-doped upconversion nanomaterials to combat thermal quenching. It favours energy transfer from sensitizers to activators to pump up the intermediate excited-state upconversion process. We identify that the oxygen moiety chelating Yb3+ ions, [Yb···O], is the key underpinning this enhancement. We demonstrate an approximately 2,000-fold enhancement in blue emission for 9.7 nm Yb3+-Tm3+ co-doped nanoparticles at 453 K. This strategy not only provides a powerful solution to illuminate the dark layer of ultra-small upconversion nanoparticles, but also suggests a new pathway to build high-efficiency upconversion systems.
Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles
Optical tweezers are widely used in materials assembly1, characterization2, biomechanical force sensing3,4 and the in vivo manipulation of cells5 and organs6. The trapping force has primarily been generated through the refractive index mismatch between a trapped object and its surrounding medium. This poses a fundamental challenge for the optical trapping of low-refractive-index nanoscale objects, including nanoparticles and intracellular organelles. Here, we report a technology that employs a resonance effect to enhance the permittivity and polarizability of nanocrystals, leading to enhanced optical trapping forces by orders of magnitude. This effectively bypasses the requirement of refractive index mismatch at the nanoscale. We show that under resonance conditions, highly doping lanthanide ions in NaYF4 nanocrystals makes the real part of the Clausius–Mossotti factor approach its asymptotic limit, thereby achieving a maximum optical trap stiffness of 0.086 pN μm–1 mW–1 for 23.3-nm-radius low-refractive-index (1.46) nanoparticles, that is, more than 30 times stronger than the reported value for gold nanoparticles of the same size. Our results suggest a new potential of lanthanide doping for the optical control of the refractive index of nanomaterials, developing the optical force tag for the intracellular manipulation of organelles and integrating optical tweezers with temperature sensing and laser cooling7 capabilities.The resonance of highly doping lanthanide ions in NaYF4 nanocrystals enhances the permittivity and polarizability of nanocrystals, leading to enhanced optical trapping forces by orders of magnitude, bypassing the trapping requirement of refractive index mismatch.
Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy
Super-resolution optical microscopy based on stimulated emission depletion effects can now be performed at much lower light intensities than before by using bright upconversion emission from thulium-doped nanoparticles. Breaking the law Improvements in super-resolution optical microscopy based on stimulated emission depletion (STED) effects have a problem: they are typically limited by a 'square-root law' regarding the number of photons required to achieve a gain in resolution. Yujia Liu and colleagues have found a way to bypass this troublesome law. As others have done before them, they adopt lanthanide-doped upconversion nanoparticles as the emitting species used to achieve high-resolution imaging. The difference this time is that the laser-like absorption and emission properties of these nanoparticles are engineered to facilitate STED-like microscopy at much lower light intensities. Lanthanide-doped glasses and crystals are attractive for laser applications because the metastable energy levels of the trivalent lanthanide ions facilitate the establishment of population inversion and amplified stimulated emission at relatively low pump power 1 , 2 , 3 . At the nanometre scale, lanthanide-doped upconversion nanoparticles (UCNPs) can now be made with precisely controlled phase, dimension and doping level 4 , 5 . When excited in the near-infrared, these UCNPs emit stable, bright visible luminescence at a variety of selectable wavelengths 6 , 7 , 8 , 9 , with single-nanoparticle sensitivity 10 , 11 , 12 , 13 , which makes them suitable for advanced luminescence microscopy applications. Here we show that UCNPs doped with high concentrations of thulium ions (Tm 3+ ), excited at a wavelength of 980 nanometres, can readily establish a population inversion on their intermediate metastable 3 H 4 level: the reduced inter-emitter distance at high Tm 3+ doping concentration leads to intense cross-relaxation, inducing a photon-avalanche-like effect that rapidly populates the metastable 3 H 4 level, resulting in population inversion relative to the 3 H 6 ground level within a single nanoparticle. As a result, illumination by a laser at 808 nanometres, matching the upconversion band of the 3 H 4  →  3 H 6 transition, can trigger amplified stimulated emission to discharge the 3 H 4 intermediate level, so that the upconversion pathway to generate blue luminescence can be optically inhibited. We harness these properties to realize low-power super-resolution stimulated emission depletion (STED) microscopy and achieve nanometre-scale optical resolution (nanoscopy), imaging single UCNPs; the resolution is 28 nanometres, that is, 1/36th of the wavelength. These engineered nanocrystals offer saturation intensity two orders of magnitude lower than those of fluorescent probes currently employed in stimulated emission depletion microscopy, suggesting a new way of alleviating the square-root law that typically limits the resolution that can be practically achieved by such techniques.
Nanorods with multidimensional optical information beyond the diffraction limit
Precise design and fabrication of heterogeneous nanostructures will enable nanoscale devices to integrate multiple desirable functionalities. But due to the diffraction limit (~200 nm), the optical uniformity and diversity within the heterogeneous functional nanostructures are hardly controlled and characterized. Here, we report a set of heterogeneous nanorods; each optically active section has its unique nonlinear response to donut-shaped illumination, so that one can discern each section with super-resolution. To achieve this, we first realize an approach of highly controlled epitaxial growth and produce a range of heterogeneous structures. Each section along the nanorod structure displays tunable upconversion emissions, in four optical dimensions, including color, lifetime, excitation wavelength, and power dependency. Moreover, we demonstrate a 210 nm single nanorod as an extremely small polychromatic light source for the on-demand generation of RGB photonic emissions. This work benchmarks our ability toward the full control of sub-diffraction-limit optical diversities of single heterogeneous nanoparticles. Development of functional nanostructures can enable a range of applications in imaging and nanoscale science. Here, the authors fabricate and characterize complex heterogeneous nanorods with diverse, tunable sub-wavelength structures.
Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals
The ultimate frontier in nanomaterials engineering is to realize their composition control with atomic scale precision to enable fabrication of nanoparticles with desirable size, shape and surface properties. Such control becomes even more useful when growing hybrid nanocrystals designed to integrate multiple functionalities. Here we report achieving such degree of control in a family of rare-earth-doped nanomaterials. We experimentally verify the co-existence and different roles of oleate anions (OA − ) and molecules (OAH) in the crystal formation. We identify that the control over the ratio of OA − to OAH can be used to directionally inhibit, promote or etch the crystallographic facets of the nanoparticles. This control enables selective grafting of shells with complex morphologies grown over nanocrystal cores, thus allowing the fabrication of a diverse library of monodisperse sub-50 nm nanoparticles. With such programmable additive and subtractive engineering a variety of three-dimensional shapes can be implemented using a bottom–up scalable approach. Atomic-level control over size, shape and surface composition of nanoparticles is vital for developing materials with integrated multiple functionalities. Here, the authors probe the different roles of oleate ions and oleic acid molecules and their effects on growth mechanisms for sub-50 nm nanoparticles.
Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles
Multiphoton fluorescence microscopy (MPM), using near infrared excitation light, provides increased penetration depth, decreased detection background, and reduced phototoxicity. Using stimulated emission depletion (STED) approach, MPM can bypass the diffraction limitation, but it requires both spatial alignment and temporal synchronization of high power (femtosecond) lasers, which is limited by the inefficiency of the probes. Here, we report that upconversion nanoparticles (UCNPs) can unlock a new mode of near-infrared emission saturation (NIRES) nanoscopy for deep tissue super-resolution imaging with excitation intensity several orders of magnitude lower than that required by conventional MPM dyes. Using a doughnut beam excitation from a 980 nm diode laser and detecting at 800 nm, we achieve a resolution of sub 50 nm, 1/20th of the excitation wavelength, in imaging of single UCNP through 93 μm thick liver tissue. This method offers a simple solution for deep tissue super resolution imaging and single molecule tracking. Upconversion nanoparticles offer the potential for deep tissue biological imaging. Here, Chen et al. develop super resolution optical imaging in the near-infrared for imaging with sub-50 nm resolution through almost 100 microns of tissue.
Axial localization and tracking of self-interference nanoparticles by lateral point spread functions
Sub-diffraction limited localization of fluorescent emitters is a key goal of microscopy imaging. Here, we report that single upconversion nanoparticles, containing multiple emission centres with random orientations, can generate a series of unique, bright and position-sensitive patterns in the spatial domain when placed on top of a mirror. Supported by our numerical simulation, we attribute this effect to the sum of each single emitter’s interference with its own mirror image. As a result, this configuration generates a series of sophisticated far-field point spread functions (PSFs), e.g. in Gaussian, doughnut and archery target shapes, strongly dependent on the phase difference between the emitter and its image. In this way, the axial locations of nanoparticles are transferred into far-field patterns. We demonstrate a real-time distance sensing technology with a localization accuracy of 2.8 nm, according to the atomic force microscope (AFM) characterization values, smaller than 1/350 of the excitation wavelength. Here, the authors show that single upconversion nanoparticles can generate position-sensitive patterns in the spatial domain when placed on a mirror. They attribute this to the single emitter’s interference with its own mirror image and show how this can be used to obtain axial localisation of the particle.