Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
108 result(s) for "Wendland, J R"
Sort by:
RNA-sequencing of the brain transcriptome implicates dysregulation of neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder
RNA-sequencing (RNA-seq) is a powerful technique to investigate the complexity of gene expression in the human brain. We used RNA-seq to survey the brain transcriptome in high-quality postmortem dorsolateral prefrontal cortex from 11 individuals diagnosed with bipolar disorder (BD) and from 11 age- and gender-matched controls. Deep sequencing was performed, with over 350 million reads per specimen. At a false discovery rate of <5%, we detected five differentially expressed (DE) genes and 12 DE transcripts, most of which have not been previously implicated in BD. Among these, Prominin 1/CD133 and ATP-binding cassette-sub-family G-member2 ( ABCG2 ) have important roles in neuroplasticity. We also show for the first time differential expression of long noncoding RNAs (lncRNAs) in BD. DE transcripts include those of serine/arginine-rich splicing factor 5 ( SRSF5 ) and regulatory factor X4 ( RFX4 ), which along with lncRNAs have a role in mammalian circadian rhythms. The DE genes were significantly enriched for several Gene Ontology categories. Of these, genes involved with GTPase binding were also enriched for BD-associated SNPs from previous genome-wide association studies, suggesting that differential expression of these genes is not simply a consequence of BD or its treatment. Many of these findings were replicated by microarray in an independent sample of 60 cases and controls. These results highlight common pathways for inherited and non-inherited influences on disease risk that may constitute good targets for novel therapies.
Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder
Meta-analyses of bipolar disorder (BD) genome-wide association studies (GWAS) have identified several genome-wide significant signals in European-ancestry samples, but so far account for little of the inherited risk. We performed a meta-analysis of ∼750 000 high-quality genetic markers on a combined sample of ∼14 000 subjects of European and Asian-ancestry (phase I). The most significant findings were further tested in an extended sample of ∼17 700 cases and controls (phase II). The results suggest novel association findings near the genes TRANK1 ( LBA1 ), LMAN2L and PTGFR . In phase I, the most significant single nucleotide polymorphism (SNP), rs9834970 near TRANK1 , was significant at the P =2.4 × 10 −11 level, with no heterogeneity. Supportive evidence for prior association findings near ANK3 and a locus on chromosome 3p21.1 was also observed. The phase II results were similar, although the heterogeneity test became significant for several SNPs. On the basis of these results and other established risk loci, we used the method developed by Park et al. to estimate the number, and the effect size distribution, of BD risk loci that could still be found by GWAS methods. We estimate that >63 000 case–control samples would be needed to identify the ∼105 BD risk loci discoverable by GWAS, and that these will together explain <6% of the inherited risk. These results support previous GWAS findings and identify three new candidate genes for BD. Further studies are needed to replicate these findings and may potentially lead to identification of functional variants. Sample size will remain a limiting factor in the discovery of common alleles associated with BD.
Association of SLC6A4 variants with obsessive-compulsive disorder in a large multicenter US family study
Genetic association studies of SLC6A4 ( SERT ) and obsessive-compulsive disorder (OCD) have been equivocal. We genotyped 1241 individuals in 278 pedigrees from the OCD Collaborative Genetics Study for 13 single-nucleotide polymorphisms, for the linked polymorphic region (LPR) indel with molecular haplotypes at rs25531, for VNTR polymorphisms in introns 2 and 7 and for a 381-bp deletion 3′ to the LPR. We analyzed using the Family-Based Association Test (FBAT) under additive, dominant, recessive and genotypic models, using both OCD and sex-stratified OCD as phenotypes. Two-point FBAT analysis detected association between Int2 ( P =0.0089) and Int7 ( P =0.0187) (genotypic model). Sex-stratified two-point analysis showed strong association in females with Int2 ( P <0.0002), significant after correction for linkage disequilibrium, and multiple marker and model testing ( P Adj =0.0069). The SLC6A4 gene is composed of two haplotype blocks (our data and the HapMap); FBAT whole-marker analysis conducted using this structure was not significant. Several noteworthy nonsignificant results have emerged. Unlike Hu et al. , we found no evidence for overtransmission of the LPR L A allele (genotype relative risk=1.11, 95% confidence interval: 0.77–1.60); however, rare individual haplotypes containing L A with P <0.05 were observed. Similarly, three individuals (two with OCD/OCPD) carried the rare I425V SLC6A4 variant, but none of them passed it on to their six OCD-affected offspring, suggesting that it is unlikely to be solely responsible for the ‘OCD plus syndrome’, as reported by Ozaki et al. In conclusion, we found evidence of genetic association at the SLC6A4 locus with OCD. A noteworthy lack of association at the LPR, LPR-rs25531 and rare 425V variants suggests that hypotheses about OCD risk need revision to accommodate these new findings, including a possible gender effect.
Copy number variants and therapeutic response to antidepressant medication in major depressive disorder
It would be beneficial to find genetic predictors of antidepressant response to help personalise treatment of major depressive disorder (MDD). Rare copy number variants (CNVs) have been implicated in several psychiatric disorders, including MDD, but their role in antidepressant response has yet to be investigated. CNV data were available for 1565 individuals with MDD from the NEWMEDS (Novel Methods leading to New Medications in Depression and Schizophrenia) consortium with prospective data on treatment outcome with either a serotonergic or noradrenergic antidepressant. No association was seen between the presence of CNV (rare or common), the overall number of CNVs or genomic CNV ‘burden’ and antidepressant response. Specific CNVs were nominally associated with antidepressant response, including 15q13.3 duplications and exonic NRXN1 deletions. These were associated with poor response to antidepressants. Overall burden of CNVs is unlikely to contribute to personalising antidepressant treatment. Specific CNVs associated with antidepressant treatment require replication and further study to confirm their role in the therapeutic action of antidepressant.
Genetic Predictors of Response to Serotonergic and Noradrenergic Antidepressants in Major Depressive Disorder: A Genome-Wide Analysis of Individual-Level Data and a Meta-Analysis
It has been suggested that outcomes of antidepressant treatment for major depressive disorder could be significantly improved if treatment choice is informed by genetic data. This study aims to test the hypothesis that common genetic variants can predict response to antidepressants in a clinically meaningful way. The NEWMEDS consortium, an academia-industry partnership, assembled a database of over 2,000 European-ancestry individuals with major depressive disorder, prospectively measured treatment outcomes with serotonin reuptake inhibiting or noradrenaline reuptake inhibiting antidepressants and available genetic samples from five studies (three randomized controlled trials, one part-randomized controlled trial, and one treatment cohort study). After quality control, a dataset of 1,790 individuals with high-quality genome-wide genotyping provided adequate power to test the hypotheses that antidepressant response or a clinically significant differential response to the two classes of antidepressants could be predicted from a single common genetic polymorphism. None of the more than half million genetic markers significantly predicted response to antidepressants overall, serotonin reuptake inhibitors, or noradrenaline reuptake inhibitors, or differential response to the two types of antidepressants (genome-wide significance p<5×10(-8)). No biological pathways were significantly overrepresented in the results. No significant associations (genome-wide significance p<5×10(-8)) were detected in a meta-analysis of NEWMEDS and another large sample (STAR*D), with 2,897 individuals in total. Polygenic scoring found no convergence among multiple associations in NEWMEDS and STAR*D. No single common genetic variant was associated with antidepressant response at a clinically relevant level in a European-ancestry cohort. Effects specific to particular antidepressant drugs could not be investigated in the current study. Please see later in the article for the Editors' Summary.
No overlap of sensitivity to capsaicin and expression of galanin in rat dorsal root ganglion neurons after axotomy
The neuropeptide galanin is known to have an antinociceptive effect under neuropathic conditions. After axotomy, galanin is upregulated in sensory neurons, presumably in the capsaicin-sensitive ones. Here, the sensitivity to capsaicin and the expression of galanin were simultaneously examined by double-staining in individual, dissociated rat dorsal root ganglion neurons (1) after axotomy of the sciatic nerve for up to 14 days and (2) in culture for up to 4 days without prior nerve injury. Ten days after axotomy, the proportion of capsaicin-sensitive neurons had decreased by 36 percentage points (from 63% to 27%), whereas the proportion of galaninergic neurons had increased by 33 percentage points (from 3% to 36%). These changes were also observed in neurons kept in culture, where the regulation was attenuated by the addition of nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) to the medium. After axotomy, galaninergic neurons had a soma size-distribution profile similar to the capsaicin-sensitive neurons, but there was no colocalization of capsaicin sensitivity and galanin expression in individual neurons. In culture, some neurons showed colocalization after 30 h and 48 h, but not after 6 h or 96 h. We conclude that the upregulation of galanin in an individual neuron is preceded by downregulation of its capsaicin sensitivity both in NGF-dependent peptidergic and in GDNF-dependent non-peptidergic neurons, indicating a change in phenotype.