Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Wenger, Seth J"
Sort by:
Not just trash birds: Quantifying avian diversity at landfills using community science data
Landfills provide seasonally reliable food resources to many bird species, including those perceived to be pest or invasive species. However, landfills often contain multiple habitat types that could attract diverse species, including those of conservation concern. To date, little is known about the characteristics and composition of bird communities at landfills relative to local and regional pools. Here we used the community science database eBird to extract avian species occurrence data at landfills across the US. We compared species richness and community similarity across space in comparison to similarly-sampled reference sites, and further quantified taxonomic and dietary traits of bird communities at landfills. While landfills harbored marginally lower species richness than reference sites (respective medians of 144 vs 160), landfill community composition, and its turnover across space, were similar to reference sites. Consistent with active waste disposal areas attracting birds, species feeding at higher trophic levels, especially gulls, were more frequently observed at landfills than reference sites. However, habitat specialists including two declining grassland species, Eastern Meadowlark ( Sturnella magna ) and Savannah Sparrow ( Passerculus sandwichensis ), as well as migratory waterfowl, were more frequently encountered at landfills than reference sites. Together, these results suggest that landfills harbor comparable avian diversity to neighboring sites, and that habitats contained within landfill sites can support species of conservation concern. As covered landfills are rarely developed or forested, management of wetlands and grasslands at these sites represents an opportunity for conservation.
Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change
Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species’ physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations.
Impediments and Solutions to Sustainable, Watershed-Scale Urban Stormwater Management: Lessons from Australia and the United States
In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.
Phylogenetic conservatism drives nutrient dynamics of coral reef fishes
The relative importance of evolutionary history and ecology for traits that drive ecosystem processes is poorly understood. Consumers are essential drivers of nutrient cycling on coral reefs, and thus ecosystem productivity. We use nine consumer “chemical traits” associated with nutrient cycling, collected from 1,572 individual coral reef fishes (178 species spanning 41 families) in two biogeographic regions, the Caribbean and Polynesia, to quantify the relative importance of phylogenetic history and ecological context as drivers of chemical trait variation on coral reefs. We find: ( 1 ) phylogenetic relatedness is the best predictor of all chemical traits, substantially outweighing the importance of ecological factors thought to be key drivers of these traits, ( 2 ) phylogenetic conservatism in chemical traits is greater in the Caribbean than Polynesia, where our data suggests that ecological forces have a greater influence on chemical trait variation, and ( 3 ) differences in chemical traits between regions can be explained by differences in nutrient limitation associated with the geologic context of our study locations. Our study provides multiple lines of evidence that phylogeny is a critical determinant of contemporary nutrient dynamics on coral reefs. More broadly our findings highlight the utility of evolutionary history to improve prediction in ecosystem ecology. The relative importance of evolutionary history and ecology for traits that drive ecosystem processes is poorly understood. Analyzing nine traits associated with fish stoichiometry from 1,572 individuals yields multiple lines of evidence that phylogeny is a critical determinant of nutrient cycling in coral reefs.
The Impact of Projected Land Use Changes on the Availability of Ecosystem Services in the Upper Flint River Watershed, USA
The conversion of forestlands to alternative land uses is a growing worldwide concern, given the wide range of provisioning and regulating ecosystem services (ES) provided by forests. We applied a scenario-based land-use/land-cover (LULC) projection technique integrating societal preferences, conservation policies, and socio-economic factors to the Upper Flint River Watershed in the Atlanta, Georgia (USA) metropolitan area. We employed the InVEST modeling toolset to assess the impact of anticipated LULC changes on ES under each development scenario. Our simulations projected a consistent conversion from Deciduous/Mixed Forests to either Urban or Evergreen forests across all scenarios, leading to a significant decline in ES. We quantified the economic impacts of this ES loss, conservatively estimated as representing millions of dollars per year under a Business as Usual scenario in just carbon and water services alone. Integrating social and policy drivers into our projection approach yielded policy-relevant results and identified the need for conservation policy instruments to protect forested ecosystems with higher conservation values. Existing conservation policies are unlikely to stem the loss of important ES, and there may be a need to consider more aggressive policies to prevent further degradation of watersheds, such as the one analyzed here.
Big biology meets microclimatology: defining thermal niches of ectotherms at landscape scales for conservation planning
Temperature profoundly affects ecology, a fact ever more evident as the ability to measure thermal environments increases and global changes alter these environments. The spatial structure of thermalscapes is especially relevant to the distribution and abundance of ectothermic organisms, but the ability to describe biothermal relationships at extents and grains relevant to conservation planning has been limited by small or sparse data sets. Here, we combine a large occurrence database of >23000 aquatic species surveys with stream microclimate scenarios supported by an equally large temperature database for a 149000-km mountain stream network to describe thermal relationships for 14 fish and amphibian species. Species occurrence probabilities peaked across a wide range of temperatures (7.0–18.8°C) but distinct warm- or cold-edge distribution boundaries were apparent for all species and represented environments where populations may be most sensitive to thermal changes. Warm-edge boundary temperatures for a native species of conservation concern were used with geospatial data sets and a habitat occupancy model to highlight subsets of the network where conservation measures could benefit local populations by maintaining cool temperatures. Linking that strategic approach to local estimates of habitat impairment remains a key challenge but is also an opportunity to build relationships and develop synergies between the research, management, and regulatory communities. As with any data mining or species distribution modeling exercise, care is required in analysis and interpretation of results, but the use of large biological data sets with accurate microclimate scenarios can provide valuable information about the thermal ecology of many ectotherms and a spatially explicit way of guiding conservation investments.
Leaf litter breakdown phenology in headwater stream networks is modulated by groundwater thermal regimes and litter type
Leaf litter dominates particulate organic carbon inputs to forest streams. Using data‐informed simulations, we explored how litter type (slow‐ vs. fast‐decomposing species), pulsed autumn litter inputs, groundwater‐mediated temperature regimes, and climate warming affect litter breakdown in a 3rd‐order stream network. We found that the time‐dependent interactions of these variables govern network‐scale litter breakdown phenology, with greater thermal sensitivity of slow‐decomposing litter for both current and future scenarios. Groundwater thermal inputs modified litter breakdown phenology by reducing spring and summer and elevating winter litter breakdown fluxes. Under future warming scenarios, the source depth of contributing groundwater influenced summer detrital resources; shallow groundwater‐fed streams had reduced summer resources compared to deep groundwater‐fed streams. Our results demonstrate that predicting in‐stream carbon cycling requires explicit consideration of the phenology of resource inputs and the seasonal timing of environmental factors, notably stream thermal regimes.
Ignoring temperature variation leads to underestimation of the temperature sensitivity of plant litter decomposition
The majority of terrestrial net primary production decomposes, fueling detrital food webs and converting dead plant carbon to atmospheric CO2. There is considerable interest in determining the sensitivity of this process to climate warming. A common approach has been to use spatial gradients in temperature (i.e., latitude or elevation) to estimate temperature sensitivity. However, these studies typically relate decomposition rates to average temperatures at each site along such gradients, ignoring within‐site temperature variation. To evaluate the potential effects of temperature variation on estimates of temperature sensitivity, we simulated plant litter decomposition using both randomly generated and real time series of temperature. This simulation approach illustrated how temperature variation leads to higher decomposition rates at a given mean temperature than is predicted from simulations in which temperature is held constant. Increases in decomposition rate were most evident at cooler sites, where temporal variation in temperature tends to be greater than at warmer sites. This unbalanced effect of temperature variation shifted the slope of the relationships between average temperature and decomposition rate, resulting in lower estimated temperature sensitivities than were used to simulate decomposition. For example, estimates of activation energy (Ea) were as much as 0.15 eV lower than the true Ea when decomposition was simulated with the true Ea set to the canonical respiration value of 0.65 eV. We found that the estimated Ea was lower than the true Ea for surface, soil, and air temperatures, but not for stream temperatures, for which there was only a weak relationship between temperature variation and mean temperature. Our results suggest that commonly used methods may underestimate the temperature dependence of litter decomposition, particularly in terrestrial environments. We encourage publication of temperature data that include variation estimates and suggest an alternative method for calculating temperature sensitivity that accounts for variation in temperature.
Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity
The imminent demise of montane species is a recurrent theme in the climate change literature, particularly for aquatic species that are constrained to networks and elevational rather than latitudinal retreat as temperatures increase. Predictions of widespread species losses, however, have yet to be fulfilled despite decades of climate change, suggesting that trends are much weaker than anticipated and may be too subtle for detection given the widespread use of sparse water temperature datasets or imprecise surrogates like elevation and air temperature. Through application of large water-temperature databases evaluated for sensitivity to historical air-temperature variability and computationally interpolated to provide high-resolution thermal habitat information for a 222,000-km network, we estimate a less dire thermal plight for cold-water species within mountains of the northwestern United States. Stream warming rates and climate velocities were both relatively low for 1968–2011 (average warming rate = 0.101 °C/decade; median velocity = 1.07 km/decade) when air temperatures warmed at 0.21 °C/decade. Many cold-water vertebrate species occurred in a subset of the network characterized by low climate velocities, and three native species of conservation concern occurred in extremely cold, slow velocity environments (0.33–0.48 km/decade). Examination of aggressive warming scenarios indicated that although network climate velocities could increase, they remain low in headwaters because of strong local temperature gradients associated with topographic controls. Better information about changing hydrology and disturbance regimes is needed to complement these results, but rather than being climatic cul-de-sacs, many mountain streams appear poised to be redoubts for cold-water biodiversity this century.
Estimating Species Occurrence, Abundance, and Detection Probability Using Zero-Inflated Distributions
Researchers have developed methods to account for imperfect detection of species with either occupancy (presence—absence) or count data using replicated sampling. We show how these approaches can be combined to simultaneously estimate occurrence, abundance, and detection probability by specifying a zero-inflated distribution for abundance. This approach may be particularly appropriate when patterns of occurrence and abundance arise from distinct processes operating at differing spatial or temporal scales. We apply the model to two data sets: (1) previously published data for a species of duck, Anas platyrhynchos, and (2) data for a stream fish species, Etheostoma scotti. We show that in these cases, an incomplete-detection zero-inflated modeling approach yields a superior fit to the data than other models. We propose that zero-inflated abundance models accounting for incomplete detection be considered when replicate count data are available.