Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
42
result(s) for
"Werneck, Fernanda P."
Sort by:
DEEP DIVERSIFICATION AND LONG-TERM PERSISTENCE IN THE SOUTH AMERICAN 'DRY DIAGONAL': INTEGRATING CONTINENT-WIDE PHYLOGEOGRAPHY AND DISTRIBUTION MODELING OF GECKOS
by
Sites, Jr, Jack W.
,
Gamble, Tony
,
Colli, Guarino R.
in
Animal populations
,
Animals
,
Bayesian analysis
2012
The relative influence of Neogene geomorphological events and Quaternary climatic changes as causal mechanisms on Neotropical diversification remains largely speculative, as most divergence timing inferences are based on a single locus and have limited taxonomic or geographic sampling. To investigate these influences, we use a multilocus (two mitochondrial and 11 nuclear genes) range-wide sampling of Phyllopezus pollicaris, a gecko complex widely distributed across the poorly studied South American 'dry diagonal' biomes. Our approach couples traditional and model-based phylogeography with geospatial methods, and demonstrates Miocene diversification and limited influence of Pleistocene climatic fluctuations on P. pollicaris. Phylogeographic structure and distribution models highlight that persistence across multiple isolated regions shaped the diversification of this species complex. Approximate Bayesian computation supports hypotheses of allopatric and ecological/sympatric speciation between lineages that largely coincide with genetic clusters associated with Chaco, Cerrado, and Caatinga, standing for complex diversification between the 'dry diagonal' biomes. We recover extremely high genetic diversity and suggest that eight well-supported clades may be valid species, with direct implications for taxonomy and conservation assessments. These patterns exemplify how low-vagility species complexes, characterized by strong genetic structure and pre-Pleistocene divergence histories, represent ideal radiations to investigate broad biogeographic histories of associated biomes.
Journal Article
In the Wake of Invasion: Tracing the Historical Biogeography of the South American Cricetid Radiation (Rodentia, Sigmodontinae)
by
Kolokotronis, Sergios-Orestis
,
Leite, Rafael N.
,
Weksler, Marcelo
in
Analysis
,
Animals
,
Biodiversity
2014
The Great American Biotic Interchange (GABI) was greatly influenced by the completion of the Isthmus of Panama and impacted the composition of modern faunal assemblages in the Americas. However, the contribution of preceding events has been comparatively less explored, even though early immigrants in the fossil records are evidence for waif dispersals. The cricetid rodents of the subfamily Sigmodontinae are a classic example of a species-rich South American radiation resulting from an early episode of North American invasion. Here, we provide a temporal and spatial framework to address key aspects of the historical biogeography and diversification of this diverse mammal group by using mitochondrial and nuclear DNA datasets coupled with methods of divergence time estimation, ancestral area reconstruction and comparative phylogenetics. Relaxed-clock time estimates indicate that divergence of the Sigmodontinae began in the middle-late Miocene (ca. 12-9 Ma). Dispersal-vicariance analyses point to the arrival of a single lineage of northern invaders with a widespread ancestral distribution and imply that the initial differentiation between Central and South America gave rise to the most basal groups within the subfamily. These two major clades diversified in the late Miocene followed by the radiation of main tribes until the early Pliocene. Within the Oryzomyalia, tribes diverged initially in eastern South America whereas multiple dispersals into the Andes promoted further diversification of the majority of modern genera. A comparatively uniform background tempo of diversification explains the species richness of sigmodontines across most nodes, except for two akodontine genera with recent increases in diversification rates. The bridging of the Central American seaway and episodes of low sea levels likely facilitated the invasion of South America long before the onset of the post-Isthmian phase of the GABI.
Journal Article
Biogeographic history and cryptic diversity of saxicolous Tropiduridae lizards endemic to the semiarid Caatinga
by
Geurgas, Silvia R
,
Leite, Rafael N
,
Werneck, Fernanda P
in
Analysis
,
Animal Migration
,
Animal Systematics/Taxonomy/Biogeography
2015
Background
Phylogeographic research has advanced in South America, with increasing efforts on taxa from the dry diagonal biomes. However, the diversification of endemic fauna from the semiarid Caatinga biome in northeastern Brazil is still poorly known. Here we targeted saxicolous lizards of the
Tropidurus semitaeniatus
species group to better understand the evolutionary history of these endemic taxa and the Caatinga. We estimated a time-calibrated phylogeny for the species group based on two mitochondrial and two nuclear genes and jointly estimated the species limits and species tree within the group. We also devoted a denser phylogeographic sampling of the
T. semitaeniatus
complex to explore migration patterns, and the spatiotemporal diffusion history to verify a possible role of the São Francisco River as a promoter of differentiation in this saxicolous group of lizards.
Results
Phylogenetic analysis detected high cryptic genetic diversity, occurrence of unique microendemic lineages associated with older highlands, and a speciation history that took place during the Pliocene-Pleistocene transition. Species delimitation detected five evolutionary entities within the
T. semitaeniatus
species group, albeit with low support. Thus, additional data are needed for a more accurate definition of species limits and interspecific relationships within this group. Spatiotemporal analyses reconstructed the geographic origin of the
T. semitaeniatus
species complex to be located north of the present-day course of the São Francisco River, followed by dispersal that expanded its distribution towards the northwest and south. Gene flow estimates showed higher migration rates into the lineages located north of the São Francisco River.
Conclusions
The phylogenetic and population structures are intrinsically associated with stable rock surfaces and landscape rearrangements, such as the establishment of drainage basins located to the northern and southern distribution ranges. The
T. semitaeniatus
complex preserved high genetic diversity during range expansion, possibly as a result of frequent long-distance dispersal events. Our results indicate that both the current course of the São Francisco River and its paleo-courses had an important role in promoting diversification of the Caatinga endemic
T. semitaeniatus
species group.
Journal Article
Conceptual and empirical advances in Neotropical biodiversity research
2018
The unparalleled biodiversity found in the American tropics (the Neotropics) has attracted the attention of naturalists for centuries. Despite major advances in recent years in our understanding of the origin and diversification of many Neotropical taxa and biotic regions, many questions remain to be answered. Additional biological and geological data are still needed, as well as methodological advances that are capable of bridging these research fields. In this review, aimed primarily at advanced students and early-career scientists, we introduce the concept of “trans-disciplinary biogeography,” which refers to the integration of data from multiple areas of research in biology (e.g., community ecology, phylogeography, systematics, historical biogeography) and Earth and the physical sciences (e.g., geology, climatology, palaeontology), as a means to reconstruct the giant puzzle of Neotropical biodiversity and evolution in space and time. We caution against extrapolating results derived from the study of one or a few taxa to convey general scenarios of Neotropical evolution and landscape formation. We urge more coordination and integration of data and ideas among disciplines, transcending their traditional boundaries, as a basis for advancing tomorrow’s ground-breaking research. Our review highlights the great opportunities for studying the Neotropical biota to understand the evolution of life.
Journal Article
Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics
by
Lamichhaney, Sangeet
,
Schliep, Alexander
,
Bravo, Gustavo A.
in
Analysis
,
Big Data
,
Biodiversity
2019
Building the Tree of Life (ToL) is a major challenge of modern biology, requiring advances in cyberinfrastructure, data collection, theory, and more. Here, we argue that phylogenomics stands to benefit by embracing the many heterogeneous genomic signals emerging from the first decade of large-scale phylogenetic analysis spawned by high-throughput sequencing (HTS). Such signals include those most commonly encountered in phylogenomic datasets, such as incomplete lineage sorting, but also those reticulate processes emerging with greater frequency, such as recombination and introgression. Here we focus specifically on how phylogenetic methods can accommodate the heterogeneity incurred by such population genetic processes; we do not discuss phylogenetic methods that ignore such processes, such as concatenation or supermatrix approaches or supertrees. We suggest that methods of data acquisition and the types of markers used in phylogenomics will remain restricted until a posteriori methods of marker choice are made possible with routine whole-genome sequencing of taxa of interest. We discuss limitations and potential extensions of a model supporting innovation in phylogenomics today, the multispecies coalescent model (MSC). Macroevolutionary models that use phylogenies, such as character mapping, often ignore the heterogeneity on which building phylogenies increasingly rely and suggest that assimilating such heterogeneity is an important goal moving forward. Finally, we argue that an integrative cyberinfrastructure linking all steps of the process of building the ToL, from specimen acquisition in the field to publication and tracking of phylogenomic data, as well as a culture that values contributors at each step, are essential for progress.
Journal Article
Thermal physiology of Amazonian lizards (Reptilia: Squamata)
by
Santos, Juan C.
,
Sette, Carla M.
,
Ávila-Pires, Teresa C. S.
in
Analysis
,
Biology and Life Sciences
,
Body temperature regulation
2018
We summarize thermal-biology data of 69 species of Amazonian lizards, including mode of thermoregulation and field-active body temperatures (Tb). We also provide new data on preferred temperatures (Tpref), voluntary and thermal-tolerance ranges, and thermal-performance curves (TPC's) for 27 species from nine sites in the Brazilian Amazonia. We tested for phylogenetic signal and pairwise correlations among thermal traits. We found that species generally categorized as thermoregulators have the highest mean values for all thermal traits, and broader ranges for Tb, critical thermal maximum (CTmax) and optimal (Topt) temperatures. Species generally categorized as thermoconformers have large ranges for Tpref, critical thermal minimum (CTmin), and minimum voluntary (VTmin) temperatures for performance. Despite these differences, our results show that all thermal characteristics overlap between both groups and suggest that Amazonian lizards do not fit into discrete thermoregulatory categories. The traits are all correlated, with the exceptions of (1) Topt, which does not correlate with CTmax, and (2) CTmin, and correlates only with Topt. Weak phylogenetic signals for Tb, Tpref and VTmin indicate that these characters may be shaped by local environmental conditions and influenced by phylogeny. We found that open-habitat species perform well under present environmental conditions, without experiencing detectable thermal stress from high environmental temperatures induced in lab experiments. For forest-dwelling lizards, we expect warming trends in Amazonia to induce thermal stress, as temperatures surpass the thermal tolerances for these species.
Journal Article
The combined role of dispersal and niche evolution in the diversification of Neotropical lizards
by
Ribeiro‐Junior, Marco A.
,
Zurano, Juan P.
,
Ávila‐Pires, Teresa C.
in
Amazonia
,
Biogeography
,
Cerrado
2020
Ecological requirements and environmental conditions can influence diversification across temporal and spatial scales. Understanding the role of ecological niche evolution under phylogenetic contexts provides insights on speciation mechanisms and possible responses to future climatic change. Large‐scale phyloclimatic studies on the megadiverse Neotropics, where biomes with contrasting vegetation types occur in narrow contact, are rare. We integrate ecological and biogeographic data with phylogenetic comparative methods, to investigate the relative roles of biogeographic events and niche divergence and conservatism on the diversification of the lizard genus Kentropyx Spix, 1825 (Squamata: Teiidae), distributed in South American rainforests and savannas. Using five molecular markers, we estimated a dated species tree, which recovered three clades coincident with previously proposed species groups diverging during the mid‐Miocene. Biogeography reconstruction indicates a role of successive dispersal events from an ancestral range in the Brazilian Shield and western Amazonia. Ancestral reconstruction of climatic tolerances and niche overlap metrics indicates a trend of conservatism during the diversification of groups from the Amazon Basin and Guiana Shield, and a strong signal of niche divergence in the Brazilian Shield savannas. Our results suggest that climatic‐driven divergence at dynamic forest‐savanna borders might have resulted in adaptation to new environmental niches, promoting habitat shifts and shaping speciation patterns of Neotropical lizards. Dispersal and ecological divergence could have a more important role in Neotropical diversification than previously thought. We integrated ecological and molecular data to investigate the relative roles of biogeographic events and niche evolution on the diversification of a lizard genus distributed in Neotropical rainforests and savannas. Our results suggest that dispersal and ecological divergence could have a more important role in Neotropical diversification than previously thought.
Journal Article
The role of environmental gradients and microclimates in structuring communities and functional groups of lizards in a rainforest-savanna transition area
by
Tuomisto, Hanna
,
Diele-Viegas, Luisa Maria
,
Souza-Oliveira, Alan F.
in
Amazon River region
,
Amazonia
,
Animals
2024
Environmental heterogeneity poses a significant influence on the functional characteristics of species and communities at local scales. Environmental transition zones, such as at the savanna-forest borders, can act as regions of ecological tension when subjected to sharp variations in the microclimate. For ectothermic organisms, such as lizards, environmental temperatures directly influence physiological capabilities, and some species use different thermoregulation strategies that produce varied responses to local climatic conditions, which in turn affect species occurrence and community dynamics. In the context of global warming, these various strategies confer different types of vulnerability as well as risks of extinction. To assess the vulnerability of a species and understand the relationships between environmental variations, thermal tolerance of a species and community structure, lizard communities in forest-savanna transition areas of two national parks in the southwestern Amazon were sampled and their thermal functional traits were characterized. Then, we investigated how community structure and functional thermal variation were shaped by two environmental predictors ( i.e. , microclimates estimated locally and vegetation structure estimated from remote sensing). It was found that the community structure was more strongly predicted by the canopy surface reflectance values obtained via remote sensing than by microclimate variables. Environmental temperatures were not the most important factor affecting the occurrence of species, and the variations in ecothermal traits demonstrated a pattern within the taxonomic hierarchy at the family level. This pattern may indicate a tendency for evolutionary history to indirectly influence these functional features. Considering the estimates of the thermal tolerance range and warming tolerance, thermoconformer lizards are likely to be more vulnerable and at greater risk of extinction due to global warming than thermoregulators. The latter, more associated with open environments, seem to take advantage of their lower vulnerability and occur in both habitat types across the transition, potentially out-competing and further increasing the risk of extinction and vulnerability of forest-adapted thermoconformer lizards in these transitional areas.
Journal Article
The lizard assemblage from Seasonally Dry Tropical Forest enclaves in the Cerrado biome, Brazil, and its association with the Pleistocenic Arc
by
Colli, Guarino R.
,
Werneck, Fernanda P.
in
Amphibia. Reptilia
,
Animal and plant ecology
,
Animal, plant and microbial ecology
2006
Aim: To determine if the distributions of lizard species from Seasonally Dry Tropical Forest (SDTF) enclaves within the Cerrado biome in central Brazil are associated with the Tropical Seasonal Forests Region, a recently proposed phytogeographic unit of South America, corroborating the existence of a Pleistocenic Arc of SDTFs. Location: SDTF remnants in the Paranã River valley, municipality of São Domingos, Goiás, Brazil. Methods: Lizards were extensively sampled using haphazard sampling, funnel traps, and pitfall traps with drift fences during four expeditions. The composition of the SDTF lizard assemblage was compared with those from other South American phytogeographic regions (Caatinga, Cerrado, Chaco, Llanos, and the dry forests of Colombia and Bolivia), based on the literature and our own unpublished data. Results: The SDTF lizard assemblage contained 20 species, including 11 species with extensive distributions among the regions considered, seven species shared exclusively with Cerrado localities, a single species shared exclusively with other SDTFs, and one endemic species. The presence of Lygodactylus klugei (Smith, Martin & Swain, 1977), presumably endemic to the Pleistocenic Arc formed by the Tropical Seasonal Forests Region, considerably extends the known distribution of this species, suggesting historical connections between Caatinga and Cerrado SDTF enclaves. Main conclusions: The composition of the lizard assemblage in Cerrado SDTF enclaves seems to corroborate the recent proposal that the SDTF should be recognized as a phytogeographic unit (or dominium). The presence of disjunct populations and endemic species highlights the urgency of considering the uniqueness of the Parana River valley SDTFs and the importance of its conservation.
Journal Article
Biome stability in South America over the last 30 kyr: Inferences from long-term vegetation dynamics and habitat modelling
2018
Aim: The aim was to examine the links between past biome stability, vegetation dynamics and biodiversity patterns. Location: South America. Time period: Last 30,000 years. Major taxa studied: Plants. Methods: We classified South America into major biomes according to their dominant plant functional groups (grasses, trees and shrubs) and ran a random forest (RF) classification with data on current climate. We then fitted the algorithm to predict biome distributions for every 1,000 years back to 21,000 yr BP and estimated biome stability by counting how many times a change in climate was predicted to shift a grid cell from one biome to another. We compared our model-based stability map with empirical estimates from selected pollen records covering the past 30 kyr in terms of vegetation shifts, changes in species composition and time-lag of vegetation responses. Results: We found a strong correlation between our habitat stability map and regional vegetation dynamics. Four scenarios emerged according to the way forest distribution shifted during a climate change. Each scenario related to specific regional features of biome stability and diversity, allowing us to formulate specific predictions on how taxonomic, genetic and functional components of biodiversity might be impacted by modern climate change. Main conclusions: Our validated map of biome stability provides important baseline information for studying the impacts of past climate on biodiversity in South America. By focusing exclusively on climatic changes of manifested relevance (i.e., those resulting in significant habitat changes), it provides a novel perspective that complements previous datasets and allows scientists to explore new questions and hypotheses at the local, regional and continental scales.
Journal Article