Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
40 result(s) for "West, Greg J."
Sort by:
Interpreting Long-Term Patterns of Seagrasses Abundance: How Seagrass Variability Is Dependent on Genus and Estuary Type
Seagrass habitats are recognised as providing essential ecosystem services and being indicators of estuarine health, and are under increasing threat globally. This study examined the spatial and temporal variability of four dominant seagrass genera (Posidonia, Zostera, Halophila and Ruppia) among five geomorphic estuary types and four levels of estuarine maturity in New South Wales (NSW), Australia, over a 40-year period. While there was a decline in total seagrass area across NSW over the last 40 years, this was mostly attributed to Ruppia, the genus with the greatest temporal variability. The composition of seagrasses differed among estuary types and with the maturity of Barrier estuaries. Posidonia was found to be the least temporally variable genus over the last 40 years. The greatest overall annual rate of decline was 1.85% year−1 for Ruppia which is considerably less than the global estimated rate of 5% year−1 over the same time period. Average annual rates of decline were greater over the last 18 years than the last 40 years, but only for the most transient genera and only in some estuary types. Recent declines in Posidonia were greater than those over the last 40 years in two of the most heavily urbanised estuaries. The temporal variability of Zostera differed significantly among estuary types and decreased with increasing water depth across all estuaries. No relationships were found between catchment disturbances, measured as land use or population density, and seagrass change or temporal variability at the estuary scale. Our results highlight the importance of distinguishing among seagrass genera when interpreting changes over time and considering factors such as estuary type, which is effectively a surrogate for environmental conditions.
Multi-scale assessments reveal changes in the distribution of the endangered seagrass Posidonia australis and the role of disturbances
Seagrasses are threatened globally by multiple anthropogenic disturbances, and management of these threats requires detailed information on where losses are occurring and why. Seagrass distribution is determined by processes operating at multiple scales, yet most assessments of change to seagrass extent are done at a single spatial scale. This study applied a multi-scale approach to quantify changes in the extent of the endangered seagrass Posidonia australis over the last 10–18 years using high-resolution mapping from 15 estuaries in New South Wales, Australia. Changes in P. australis extent and relationships with anthropogenic disturbances were examined at two spatial scales: across entire estuaries and at sub-estuary “local” scales within 50 × 50 m grids. Although increases in P. australis area were observed in ten estuaries, losses at local scales were prevalent in all estuaries. No disturbances correlated with seagrass change at the estuary scale; however, the greatest losses occurred in Botany Bay which is a highly modified estuary with a heavily urbanised catchment. At local scales, losses of P. australis were strongly associated with large areas of artificial structures and distance to the sea, and the greatest increases were observed in areas with marine reserves and no oyster aquaculture. These findings highlight the importance of quantifying changes in seagrass extent at multiple scales, as estuary-scale trends can mask localised losses if they are offset by increases in other parts of the estuary. Identifying hotspots of declines and the disturbances causing them are essential for applying focussed management actions to conserve seagrasses.
Hook‐shaped enterolith and secondary cachexia in a free‐living grey nurse shark (Carcharias taurus, Rafinesque 1810)
The carcass of a critically endangered, juvenile female grey nurse shark (Carcharias taurus, Rafinesque 1810) was recovered from a south‐eastern Australian beach and subjected to necropsy. The 1.98‐m‐long shark exhibited advanced cachexia with its total weight (19.0 kg) and liver weight (0.37 kg) reduced by 60% and 89%, respectively, compared with a healthy individual of the same length. Marked tissue decomposition was evident preventing histopathology and identification of a definitive cause of death. At necropsy, the abdominal organs were abnormally displaced and showed marked reductions in size compared with a healthy individual of the same size. Importantly, a hook‐shaped enterolith (HSE), with a rough surface and cream in colour, was found within the spiral valve of the intestine and is to the authors’ knowledge, the first description of such in any marine animal. X‐ray diffractometry showed that the HSE comprised the minerals monohydrocalcite (Ca[CO₃].H₂O; ~70 wt%) and struvite (Mg [NH4] [PO4]. [H2O]6; ~30 wt%). A CT scan showed concentric lamellate concretions around a 7/o offset J‐hook that formed the nidus of the HSE. Nylon fishing line attached to the hook exited the HSE and was evident in the abdominal cavity through a perforation in the intestinal wall where the posterior intestinal artery merges. The most parsimonious reconstruction of events leading to enterolithiasis and secondary cachexia in this shark was the consumption of a hooked fish and subsequent hook migration causing perforations of the cardiac stomach wall followed by the thin, muscular wall of the apposed, sub‐adjacent intestine. Hook‐shaped enterolith found in the intestine of a stranded, immature female grey nurse shark, Carcharias taurus, that exhibited advanced cachexia. The enterolith was composed of the minerals monohydrocalcite and struvite and a 7/o offset J‐hook formed the nidus. Nylon line attached to the hook (enterolith) was also evident in the abdominal cavity via a perforation of the intestine.
Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change
Increased concentrations of ozone and fine particulate matter (PM2.5) since preindustrial times reflect increased emissions, but also contributions of past climate change. Here we use modeled concentrations from an ensemble of chemistry-climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change. Using simulated concentrations for 2000 and 1850 and concentration-response functions (CRFs), we estimate that, at present, 470 000 (95% confidence interval, 140 000 to 900 000) premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 (1.3 to 3.0) million deaths with anthropogenic PM2.5-related cardiopulmonary diseases (93%) and lung cancer (7%). These estimates are smaller than ones from previous studies because we use modeled 1850 air pollution rather than a counterfactual low concentration, and because of different emissions. Uncertainty in CRFs contributes more to overall uncertainty than the spread of model results. Mortality attributed to the effects of past climate change on air quality is considerably smaller than the global burden: 1500 (−20 000 to 27 000) deaths yr−1 due to ozone and 2200 (−350 000 to 140 000) due to PM2.5. The small multi-model means are coincidental, as there are larger ranges of results for individual models, reflected in the large uncertainties, with some models suggesting that past climate change has reduced air pollution mortality.
Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls
Background: Tropospheric ozone and black carbon (BC), a component of fine paniculate matter (PM < 2.5 urn in aerodynamic diameter; PM₂.₅), are associated with premature mortality and they disrupt global and regional climate. Objectives: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM₂.₅ and ozone using two composition-climate models, and calculated associated changes in premature PM₂.₅-and ozone-related deaths using epidemiologically derived concentration-response functions. Results: We estimated that, for PM₂.₅ and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM₂.₅ relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.
Modelling global tropical cyclone wind footprints
A novel approach to modelling the surface wind field of landfalling tropical cyclones (TCs) is presented. The modelling system simulates the evolution of the low-level wind fields of landfalling TCs, accounting for terrain effects. A two-step process models the gradient-level wind field using a parametric wind field model fitted to TC track data and then brings the winds down to the surface using a numerical boundary layer model. The physical wind response to variable surface drag and terrain height produces substantial local modifications to the smooth wind field provided by the parametric wind profile model. For a set of US historical landfalling TCs the accuracy of the simulated footprints compares favourably with contemporary modelling approaches. The model is applicable from single-event simulation to the generation of global catalogues. One application demonstrated here is the creation of a dataset of 714 global historical TC overland wind footprints. A preliminary analysis of this dataset shows regional variability in the inland wind speed decay rates and evidence of a strong influence of regional orography. This dataset can be used to advance our understanding of overland wind risk in regions of complex terrain and support wind risk assessments in regions of sparse historical data.
Future Global Mortality from Changes in Air Pollution Attributable to Climate Change
Ground-level ozone and fine particulate matter (PM (sub 2.5)) are associated with premature human mortality; their future concentrations depend on changes in emissions, which dominate the near-term, and on climate change. Previous global studies of the air-quality-related health effects of future climate change used single atmospheric models. However, in related studies, mortality results differ among models. Here we use an ensemble of global chemistry-climate models to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP (Representative Concentration Pathway) 8.5, is probably positive. We estimate 3,340 (30,300 to 47,100) ozone-related deaths in 2030, relative to 2000 climate, and 43,600 (195,000 to 237,000) in 2100 (14 percent of the increase in global ozone-related mortality). For PM (sub 2.5), we estimate 55,600 (34,300 to 164,000) deaths in 2030 and 215,000 (76,100 to 595,000) in 2100 (countering by 16 percent the global decrease in PM (sub 2.5)-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.
The Effect of Future Ambient Air Pollution on Human Premature Mortality to 2100 Using Output from the ACCMIP Model Ensemble
Ambient air pollution from ground-level ozone and fine particulate matter (PM(sub 2.5)) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry climate models simulated future concentrations of ozone and PM(sub 2.5) at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air-pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM(sub 2.5) relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM(sub 2.5) in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths per year), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382000 (121000 to 728000) deaths per year in 2000 to between 1.09 and 2.36 million deaths per year in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM(sub 2.5) concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, and are associated with avoided premature mortality, particularly in 2100: between 2.39 and 1.31 million deaths per year for the four RCPs. The global mortality burden of PM(sub 2.5) is estimated to decrease from 1.70 (1.30 to 2.10) million deaths per year in 2000 to between 0.95 and 1.55 million deaths per year in 2100 for the four RCPs due to the combined effect of decreases in PM(sub 2.5) concentrations and changes in population and baseline mortality rates. Trends in future air-pollution-related mortality vary regionally across scenarios, reflecting assumptions for economic growth and air pollution control specific to each RCP and region. Mortality estimates differ among chemistry climate models due to differences in simulated pollutant concentrations, which is the greatest contributor to overall mortality uncertainty for most cases assessed here, supporting the use of model ensembles to characterize uncertainty. Increases in exposed population and baseline mortality rates of respiratory diseases magnify the impact on premature mortality of changes in future air pollutant concentrations and explain why the future global mortality burden of air pollution can exceed the current burden, even where air pollutant concentrations decrease.
Design and pharmacology of a highly specific dual FMS and KIT kinase inhibitor
Inflammation and cancer, two therapeutic areas historically addressed by separate drug discovery efforts, are now coupled in treatment approaches by a growing understanding of the dynamic molecular dialogues between immune and cancer cells. Agents that target specific compartments of the immune system, therefore, not only bring new disease modifying modalities to inflammatory diseases, but also offer a new avenue to cancer therapy by disrupting immune components of the microenvironment that foster tumor growth, progression, immune evasion, and treatment resistance. McDonough feline sarcoma viral (v-fms) oncogene homolog (FMS) and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) are two hematopoietic cell surface receptors that regulate the development and function of macrophages and mast cells, respectively. We disclose a highly specific dual FMS and KIT kinase inhibitor developed from a multifaceted chemical scaffold. As expected, this inhibitor blocks the activation of macrophages, osteoclasts, and mast cells controlled by these two receptors. More importantly, the dual FMS and KIT inhibition profile has translated into a combination of benefits in preclinical disease models of inflammation and cancer.
Quantification of black carbon mixing state from traffic: implications for aerosol optical properties
The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was  < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.