Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
66
result(s) for
"White, Kris M."
Sort by:
SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling
by
Zhang, Ke
,
García-Sastre, Adolfo
,
White, Kris M.
in
Active Transport, Cell Nucleus
,
Animals
,
Antiviral activity
2020
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic that is a serious global health problem. Evasion of IFN-mediated antiviral signaling is a common defense strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs). Our results demonstrate that the viral accessory protein Orf6 exerts this anti-IFN activity. We found that SARS-CoV-2 Orf6 localizes at the nuclear pore complex (NPC) and directly interacts with Nup98-Rae1 via its C-terminal domain to impair docking of cargo-receptor (karyopherin/importin) complex and disrupt nuclear import. In addition, we show that a methionine-to-arginine substitution at residue 58 impairs Orf6 binding to the Nup98-Rae1 complex and abolishes its IFN antagonistic function. All together our data unravel a mechanism of viral antagonism in which a virus hijacks the Nup98-Rae1 complex to overcome the antiviral action of IFN.
Journal Article
COVID-19: Famotidine, Histamine, Mast Cells, and Mechanisms
by
García-Sastre, Adolfo
,
White, Kris M.
,
Roy, Chad J.
in
Antiviral agents
,
Cell activation
,
Clinical trials
2021
SARS-CoV-2 infection is required for COVID-19, but many signs and symptoms of COVID-19 differ from common acute viral diseases. SARS-CoV-2 infection is necessary but not sufficient for development of clinical COVID-19 disease. Currently, there are no approved pre- or post-exposure prophylactic COVID-19 medical countermeasures. Clinical data suggest that famotidine may mitigate COVID-19 disease, but both mechanism of action and rationale for dose selection remain obscure. We have investigated several plausible hypotheses for famotidine activity including antiviral and host-mediated mechanisms of action. We propose that the principal mechanism of action of famotidine for relieving COVID-19 symptoms involves on-target histamine receptor H 2 activity, and that development of clinical COVID-19 involves dysfunctional mast cell activation and histamine release. Based on these findings and associated hypothesis, new COVID-19 multi-drug treatment strategies based on repurposing well-characterized drugs are being developed and clinically tested, and many of these drugs are available worldwide in inexpensive generic oral forms suitable for both outpatient and inpatient treatment of COVID-19 disease.
Journal Article
Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19
2021
The novel SARS-CoV-2 virus emerged in December 2019 and has few effective treatments. We applied a computational drug repositioning pipeline to SARS-CoV-2 differential gene expression signatures derived from publicly available data. We utilized three independent published studies to acquire or generate lists of differentially expressed genes between control and SARS-CoV-2-infected samples. Using a rank-based pattern matching strategy based on the Kolmogorov–Smirnov Statistic, the signatures were queried against drug profiles from Connectivity Map (CMap). We validated 16 of our top predicted hits in live SARS-CoV-2 antiviral assays in either Calu-3 or 293T-ACE2 cells. Validation experiments in human cell lines showed that 11 of the 16 compounds tested to date (including clofazimine, haloperidol and others) had measurable antiviral activity against SARS-CoV-2. These initial results are encouraging as we continue to work towards a further analysis of these predicted drugs as potential therapeutics for the treatment of COVID-19.
Journal Article
SARS-CoV-2 Inhibitors Identified by Phenotypic Analysis of a Collection of Viral RNA-Binding Molecules
by
García-Sastre, Adolfo
,
White, Kris M.
,
Rosales, Romel
in
3’UTR S2m hairpin
,
Antiviral agents
,
antiviral drug
2022
Antiviral agents are needed for the treatment of SARS-CoV-2 infections and to control other coronavirus outbreaks that may occur in the future. Here we report the identification and characterization of RNA-binding compounds that inhibit SARS-CoV-2 replication. The compounds were detected by screening a small library of antiviral compounds previously shown to bind HIV-1 or HCV RNA elements with a live-virus cellular assay detecting inhibition of SARS-CoV-2 replication. These experiments allowed detection of eight compounds with promising anti-SARS-CoV-2 activity in the sub-micromolar to micromolar range and wide selectivity indexes. Examination of the mechanism of action of three selected hit compounds excluded action on the entry or egress stages of the virus replication cycle and confirmed recognition by two of the molecules of conserved RNA elements of the SARS-CoV-2 genome, including the highly conserved S2m hairpin located in the 3’-untranslated region of the virus. While further studies are needed to clarify the mechanism of action responsible for antiviral activity, these results facilitate the discovery of RNA-targeted antivirals and provide new chemical scaffolds for developing therapeutic agents against coronaviruses.
Journal Article
Structures of SARS-CoV-2 N7-methyltransferase with DOT1L and PRMT7 inhibitors provide a platform for new antivirals
by
García-Sastre, Adolfo
,
White, Kris M.
,
Kottur, Jithesh
in
Adenosine
,
Analogs
,
Antiviral activity
2023
The RNA N7-methyltransferase (MTase) activity of SARS-CoV-2’s nsp14 protein is essential for viral replication and is a target for the development of new antivirals. Nsp14 uses S-adenosyl methionine (SAM) as the methyl donor to cap the 5’ end of the SARS-CoV-2 mRNA and generates S-adenosyl homocysteine (SAH) as the reaction byproduct. Due to the central role of histone MTases in cancer, many SAM/SAH analogs with properties of cell permeability have recently been developed for the inhibition of these MTases. We have succeeded in identifying two such compounds (SGC0946 and SGC8158) that display significant antiviral activity and bind to the SARS-CoV-2 nsp14 N7-MTase core. Unexpectedly, crystal structures of SGC0946 and SGC8158 with the SARS-CoV-2 nsp14 N7-MTase core identify them as bi-substrate inhibitors of the viral MTase, co-occupying both the SAM and RNA binding sites; positing novel features that can be derivatized for increased potency and selectivity for SARS-CoV-2 nsp14. Taken together, the high-resolution structures and the accompanying biophysical and viral replication data provide a new avenue for developing analogs of SGC0946 and SGC8158 as antivirals.
Journal Article
Pharmacological disruption of mSWI/SNF complex activity restricts SARS-CoV-2 infection
2023
Identification of host determinants of coronavirus infection informs mechanisms of viral pathogenesis and can provide new drug targets. Here we demonstrate that mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) chromatin remodeling complexes, specifically canonical BRG1/BRM-associated factor (cBAF) complexes, promote severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and represent host-directed therapeutic targets. The catalytic activity of SMARCA4 is required for mSWI/SNF-driven chromatin accessibility at the
ACE2
locus,
ACE2
expression and virus susceptibility. The transcription factors HNF1A/B interact with and recruit mSWI/SNF complexes to
ACE2
enhancers, which contain high HNF1A motif density. Notably, small-molecule mSWI/SNF ATPase inhibitors or degraders abrogate angiotensin-converting enzyme 2 (ACE2) expression and confer resistance to SARS-CoV-2 variants and a remdesivir-resistant virus in three cell lines and three primary human cell types, including airway epithelial cells, by up to 5 logs. These data highlight the role of mSWI/SNF complex activities in conferring SARS-CoV-2 susceptibility and identify a potential class of broad-acting antivirals to combat emerging coronaviruses and drug-resistant variants.
The canonical BRG1/BRM-associated factor (cBAF) complex is recruited by HNF1A/B to angiotensin-converting enzyme 2 (ACE2) enhancers, promoting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Inhibition of the catalytic activity of SMARCA4 precludes
ACE2
expression and reduces susceptibility to SARS-CoV-1 and major SARS-CoV-2 variants.
Journal Article
Influenza B virus reverse genetic backbones with improved growth properties in the EB66® cell line as basis for vaccine seed virus generation
by
García-Sastre, Adolfo
,
White, Kris M.
,
Krammer, Florian
in
Allergy and Immunology
,
Cell culture
,
Cell line
2018
•These are the initial steps of optimizing influenza B virus growth within the EB66 cell line.•A collection of 71 influenza B viruses were curated and sequenced, some reported for the first time.•Potential vaccine backbones from the top growing influenza B viruses using reverse genetics.•We show that known chemical influenza virus growth enhancers are functional in the EB66 cell line.
Vaccination remains the best available prophylaxis to prevent influenza virus infections, yet current inadequacies in influenza virus vaccine manufacturing often lead to vaccine shortages at times when the vaccine is most needed, as it was the case during the last influenza virus pandemic. Novel influenza virus vaccine production systems will be crucial to improve public health and safety. Here we report the optimization of influenza B virus growth in the proprietary EB66® cell line, currently in use for human vaccine production. To this end, we collected, curated and sequenced 71 influenza B viruses selected for high diversity in date of isolation and lineage. This viral collection was tested for ability to enter and replicate within EB66® cells in a single cycle assay and appears to readily infect these cells. When the collection was tested for viral progeny production in a multi-cycle assay, we found a large variation from strain to strain. The strains with the top growth characteristics from the B/Victoria and B/Yamagata lineages were selected for vaccine backbone generation using a reverse genetics system. We then showed that these backbones maintain their desirable growth within EB66® cells when the HA and NA from poorly growing strains were substituted for the parental segments, indicating that the selected backbones are viable options for vaccine production in EB66®. Finally, we show that compounds previously reported to enhance influenza virus growth in cell culture also increase virus production in the EB66® cell line.
Journal Article
Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing
2020
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)
1
. The development of a vaccine is likely to take at least 12–18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose–response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod
2
–
4
and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from H9 human embryonic stem cell lines, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.
A screen of the ReFRAME library of approximately 12,000 known drugs for antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) identified several candidate compounds with suitable activities and pharmacological profiles, which could potentially expedite the deployment of therapies for coronavirus disease 2019 (COVID-19).
Journal Article
Structures of SARS-CoV-2 N7-methyltransferase with DOT1L and PRMT7 inhibitors provide a platform for new antivirals
by
García-Sastre, Adolfo
,
White, Kris M.
,
Kottur, Jithesh
in
Microbiology
,
Parasitology
,
Virology
2023
The RNA N7-methyltransferase (MTase) activity of SARS-CoV-2’s nsp14 protein is essential for viral replication and is a target for the development of new antivirals. Nsp14 uses S-adenosyl methionine (SAM) as the methyl donor to cap the 5’ end of the SARS-CoV-2 mRNA and generates S-adenosyl homocysteine (SAH) as the reaction byproduct. Due to the central role of histone MTases in cancer, many SAM/SAH analogs with properties of cell permeability have recently been developed for the inhibition of these MTases. We have succeeded in identifying two such compounds (SGC0946 and SGC8158) that display significant antiviral activity and bind to the SARS-CoV-2 nsp14 N7-MTase core. Unexpectedly, crystal structures of SGC0946 and SGC8158 with the SARS-CoV-2 nsp14 N7-MTase core identify them as bi-substrate inhibitors of the viral MTase, co-occupying both the SAM and RNA binding sites; positing novel features that can be derivatized for increased potency and selectivity for SARS-CoV-2 nsp14. Taken together, the high-resolution structures and the accompanying biophysical and viral replication data provide a new avenue for developing analogs of SGC0946 and SGC8158 as antivirals.
Journal Article