Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
77 result(s) for "White, Melanie B."
Sort by:
Modulation of the Metabiome by Rifaximin in Patients with Cirrhosis and Minimal Hepatic Encephalopathy
Hepatic encephalopathy (HE) represents a dysfunctional gut-liver-brain axis in cirrhosis which can negatively impact outcomes. This altered gut-brain relationship has been treated using gut-selective antibiotics such as rifaximin, that improve cognitive function in HE, especially its subclinical form, minimal HE (MHE). However, the precise mechanism of the action of rifaximin in MHE is unclear. We hypothesized that modulation of gut microbiota and their end-products by rifaximin would affect the gut-brain axis and improve cognitive performance in cirrhosis. Aim To perform a systems biology analysis of the microbiome, metabolome and cognitive change after rifaximin in MHE. Twenty cirrhotics with MHE underwent cognitive testing, endotoxin analysis, urine/serum metabolomics (GC and LC-MS) and fecal microbiome assessment (multi-tagged pyrosequencing) at baseline and 8 weeks post-rifaximin 550 mg BID. Changes in cognition, endotoxin, serum/urine metabolites (and microbiome were analyzed using recommended systems biology techniques. Specifically, correlation networks between microbiota and metabolome were analyzed before and after rifaximin. There was a significant improvement in cognition(six of seven tests improved, p<0.01) and endotoxemia (0.55 to 0.48 Eu/ml, p = 0.02) after rifaximin. There was a significant increase in serum saturated (myristic, caprylic, palmitic, palmitoleic, oleic and eicosanoic) and unsaturated (linoleic, linolenic, gamma-linolenic and arachnidonic) fatty acids post-rifaximin. No significant microbial change apart from a modest decrease in Veillonellaceae and increase in Eubacteriaceae was observed. Rifaximin resulted in a significant reduction in network connectivity and clustering on the correlation networks. The networks centered on Enterobacteriaceae, Porphyromonadaceae and Bacteroidaceae indicated a shift from pathogenic to beneficial metabolite linkages and better cognition while those centered on autochthonous taxa remained similar. Rifaximin is associated with improved cognitive function and endotoxemia in MHE, which is accompanied by alteration of gut bacterial linkages with metabolites without significant change in microbial abundance. ClinicalTrials.gov NCT01069133.
Diagnosis of Minimal Hepatic Encephalopathy Using Stroop EncephalApp: A Multicenter US-Based, Norm-Based Study
Diagnosing minimal hepatic encephalopathy (MHE) is challenging, and point-of-care tests are needed. Stroop EncephalApp has been validated for MHE diagnosis in single-center studies. The objective of the study was to validate EncephalApp for MHE diagnosis in a multicenter study. Outpatient cirrhotics (with/without prior overt hepatic encephalopathy (OHE)) and controls from three sites (Virginia (VA), Ohio (OH), and Arkansas (AR)) underwent EncephalApp and two gold standards, psychometric hepatic encephalopathy score (PHES) and inhibitory control test (ICT). Age-/gender-/education-adjusted values for EncephalApp based on direct norms, and based on ICT and PHES, were defined. Patients were followed, and EncephalApp cutoff points were used to determine OHE prediction. These cutoff points were then used in a separate VA-based validation cohort. A total of 437 cirrhotics (230 VA, 107 OH, 100 AR, 36% OHE, model for end-stage liver disease (MELD) score 11) and 308 controls (103 VA, 100 OH, 105 AR) were included. Using adjusted variables, MHE was present using EncephalApp based on norms in 51%, EncephalApp based on PHES in 37% (sensitivity 80%), and EncephalApp based on ICT in 54% of patients (sensitivity 70%). There was modest/good agreement between sites on EncephalApp MHE diagnosis using the three methods. OHE developed in 13% of patients, which was predicted by EncephalApp independent of the MELD score. In the validation cohort of 121 VA cirrhotics, EncephalApp directly and based on gold standards remained consistent for MHE diagnosis with >70% sensitivity. In this multicenter study, EncephalApp, using adjusted population norms or in the context of existing gold standard tests, had good sensitivity for MHE diagnosis and predictive capability for OHE development.
Proton Pump Inhibitor Initiation and Withdrawal affects Gut Microbiota and Readmission Risk in Cirrhosis
ObjectivesCirrhosis is associated with gut microbial dysbiosis, high readmissions and proton pump inhibitor (PPI) overuse, which could be inter-linked. Our aim was to determine the effect of PPI use, initiation and withdrawl on gut microbiota and readmissions in cirrhosis.MethodsFour cohorts were enrolled. Readmissions study: Cirrhotic inpatients were followed throughout the hospitalization and 30/90-days post-discharge. PPI initiation, withdrawal/continuation patterns were analyzed between those with/without readmissions. Cross-sectional microbiota study: Cirrhotic outpatients and controls underwent stool microbiota analysis. Beneficial autochthonous and oral-origin taxa analysis vis-à-vis PPI use was performed. Longitudinal studies: Two cohorts of decompensated cirrhotic outpatients were enrolled. Patients on chronic unindicated PPI use were withdrawn for 14 days. Patients not on PPI were started on omeprazole for 14 days. Microbial analysis for oral-origin taxa was performed pre/post-intervention.ResultsReadmissions study: 343 inpatients (151 on admission PPI) were enrolled. 21 were withdrawn and 45 were initiated on PPI resulting in a PPI use increase of 21%. PPIs were associated with higher 30 (p = 0.002) and 90-day readmissions (p = 0.008) independent of comorbidities, medications, MELD and age. Cross-sectional microbiota: 137 cirrhotics (59 on PPI) and 45 controls (17 on PPI) were included. PPI users regardless of cirrhosis had higher oral-origin microbiota while cirrhotics on PPI had lower autochthonous taxa compared to the rest. Longitudinal studies: Fifteen decompensated cirrhotics tolerated omeprazole initiation with an increase in oral-origin microbial taxa compared to baseline. PPIs were withdrawn from an additional 15 outpatients, which resulted in a significant reduction of oral-origin taxa compared to baseline.ConclusionsPPIs modulate readmission risk and microbiota composition in cirrhosis, which responds to withdrawal. The systematic withdrawal and judicious use of PPIs is needed from a clinical and microbiological perspective in decompensated cirrhosis.
Serum and urinary metabolomics and outcomes in cirrhosis
Cirrhosis can alter several metabolic pathways. Metabolomics could prognosticate outcomes like hepatic encephalopathy (HE), transplant, hospitalization and death. Determine changes in serum and urine metabolomics in cirrhotics who develop outcomes. Cirrhotic outpatients underwent data, serum/urine collection and were followed for 90 days. Demographics, cirrhosis details and medications were collected. Metabolomics was performed on urine/serum using GC/MS with subsequent bioinformatics analyses (ChemRICH, MetaMAPP and PLS-DA). Logistic regression adjusting for covariates (demographics, alcohol etiology, prior HE, PPI, SBP prophylaxis, rifaximin/lactulose) were performed and ROC curves comparing MELD to adjusted serum & urine metabolites were created. 211 patients gave serum, of which 64 were hospitalized, 19 developed HE, 13 were transplanted and 11 died. 164 patients gave urine of which 56 were hospitalized, 18 developed HE, 12 were transplanted and 11 died. Metabolomics: Saturated fatty acids, amino acids and bioenergetics-related metabolites differentiated patients with/without outcomes. After regression, 232, 228, 284 and 229 serum metabolites were significant for hospitalization, HE, death and transplant. In urine 290, 284, 227 & 285 metabolites were significant for hospitalization, HE, death and transplant respectively. AUC was higher for serum metabolites vs MELD for HE (0.85 vs.0.76), death (0.99 vs.0.88), transplant (0.975 vs.0.94) and hospitalizations (0.84 vs.0.83). Similarly, urinary metabolite AUC was also higher than MELD for HE (0.87 vs.0.72), death (0.92 vs 0.86), transplant (0.99 vs.0.90) and hospitalizations (0.89 vs.0.84). In this exploratory study, serum and metabolites focused on lipid, bioenergetics and amino acid metabolism are altered in cirrhotics who develop negative outcomes.
Gut Microbiota Alterations can predict Hospitalizations in Cirrhosis Independent of Diabetes Mellitus
Diabetes (DM) is prevalent in cirrhosis and may modulate the risk of hospitalization through gut dysbiosis. We aimed to define the role of gut microbiota on 90-day hospitalizations and of concomitant DM on microbiota. Cirrhotic outpatients with/without DM underwent stool and sigmoid mucosal microbial analysis and were followed for 90 days. Microbial composition was compared between those with/without DM and those who were hospitalized/not. Regression/ROC analyses for hospitalizations were performed using clinical and microbial features. 278 cirrhotics [39% hepatic encephalopathy (HE), 31%DM] underwent stool while 72 underwent mucosal analyses. Ultimately, 94 were hospitalized and they had higher MELD, proton pump inhibitor (PPI) use and HE without difference in DM. Stool/mucosal microbiota were significantly altered in those who were hospitalized (UNIFRAC p< = 1.0e-02). Specifically, lower stool Bacteroidaceae, Clostridiales XIV, Lachnospiraceae, Ruminococcacae and higher Enterococcaceae and Enterobacteriaceae were seen in hospitalized patients. Concomitant DM impacted microbiota UNIFRAC (stool, p = 0.003, mucosa,p = 0.04) with higher stool Bacteroidaceae and lower Ruminococcaeae. Stool Bacteroidaceaeae and Clostridiales XIV predicted 90-day hospitalizations independent of clinical predictors (MELD, HE, PPI). Stool and colonic mucosal microbiome are altered in cirrhotics who get hospitalized with independent prediction using stool Bacteroidaceae and Clostridiales XIV. Concomitant DM distinctly impacts gut microbiota without affecting hospitalizations.
Elderly patients have an altered gut-brain axis regardless of the presence of cirrhosis
Cognitive difficulties manifested by the growing elderly population with cirrhosis could be amnestic (memory-related) or non-amnestic (memory-unrelated). The underlying neuro-biological and gut-brain changes are unclear in this population. We aimed to define gut-brain axis alterations in elderly cirrhotics compared to non-cirrhotic individuals based on presence of cirrhosis and on neuropsychological performance. Age-matched outpatients with/without cirrhosis underwent cognitive testing (amnestic/non-amnestic domains), quality of life (HRQOL), multi-modal MRI (fMRI go/no-go task, volumetry and MR spectroscopy), blood (inflammatory cytokines) and stool collection (for microbiota). Groups were studied based on cirrhosis/not and also based on neuropsychological performance (amnestic-type, amnestic/non-amnestic-type and unimpaired). Cirrhotics were impaired on non-amnestic and selected amnestic tests, HRQOL and systemic inflammation compared to non-cirrhotics. Cirrhotics demonstrated significant changes on MR spectroscopy but not on fMRI or volumetry. Correlation networks showed that Lactobacillales members were positively while Enterobacteriaceae and Porphyromonadaceae were negatively linked with cognition. Using the neuropsychological classification amnestic/non-amnestic-type individuals were majority cirrhosis and had worse HRQOL, higher inflammation and decreased autochthonous taxa relative abundance compared to the rest. This classification also predicted fMRI, MR spectroscopy and volumetry changes between groups. We conclude that gut-brain axis alterations may be associated with the type of neurobehavioral decline or inflamm-aging in elderly cirrhotic subjects.
Diagnosis of covert hepatic encephalopathy: a multi-center study testing the utility of single versus combined testing
Covert hepatic encephalopathy (CHE) affects cognition in a multidimensional fashion. Current guidelines recommend performing Psychometric Hepatic Encephalopathy Score (PHES) and a second test to diagnose CHE for multi-center trials. We aimed to determine if a two-test combination strategy improved CHE diagnosis agreement, and accuracy to predict overt hepatic encephalopathy (OHE), compared to single testing. Cirrhotic outpatients without baseline OHE performed PHES, Inhibitory Control Test (ICT), and Stroop EncephAlapp (StE) at three centers. Patients were followed for OHE development. Areas under the receiver operation characteristic curve (AUROC) were calculated. We included 437 patients (399 with follow-up data). CHE prevalence varied with testing strategy: PHES+ICT 18%, ICT + StE 25%, PHES+StE 29%, ICT 35%, PHES 37%, and StE 54%. Combination with best test agreement was PHES+StE (k = 0.34). Sixty patients (15%) developed OHE. Although CHE by StE showed the highest sensitivity to predict OHE, PHES and PHES+StE were more accurate at the expense of a lower sensitivity (55%, AUROC: 0.587; 36%, AUROC: 0.629; and 29%, AUROC: 0.623; respectively). PHES+ICT was the most specific (85%) but all strategies including ICT showed sensitivities in the 33–45% range. CHE diagnosis by PHES (HR = 1.79, p = 0.04), StE (HR = 1.69, p = 0.04), and PHES+StE (HR = 1.72, p = 0.04), were significant OHE predictors even when adjusted for prior OHE and MELD. Our results demonstrate that combined testing decreases CHE prevalence without improving the accuracy of OHE prediction. Testing with PHES or StE alone, or a PHES+StE combination, is equivalent to diagnose CHE and predict OHE development in a multi-center setting.
Impaired Gut-Liver-Brain Axis in Patients with Cirrhosis
Cirrhosis is associated with brain dysfunction known as hepatic encephalopathy (HE). The mechanisms behind HE are unclear although hyperammonemia and systemic inflammation through gut dysbiosis have been proposed. We aimed to define the individual contribution of specific gut bacterial taxa towards astrocytic and neuronal changes in brain function using multi-modal MRI in patients with cirrhosis. 187 subjects (40 controls, 147 cirrhotic; 87 with HE) underwent systemic inflammatory assessment, cognitive testing, stool microbiota analysis and brain MRI analysis. MR spectroscopy (MRS) changes of increased Glutamate/glutamine, reduced myo-inositol and choline are hyperammonemia-associated astrocytic changes, while diffusion tensor imaging (DTI) demonstrates changes in neuronal integrity and edema. Linkages between cognition, MRI parameters and gut microbiota were compared between groups. We found that HE patients had a significantly worse cognitive performance, systemic inflammation, dysbiosis and hyperammonemia compared to controls and cirrhotics without HE. Specific microbial families (autochthonous taxa negatively and Enterobacteriaceae positively) correlated with MR spectroscopy and hyperammonemia-associated astrocytic changes. On the other hand Porphyromonadaceae , were only correlated with neuronal changes on DTI without linkages with ammonia. We conclude that specific gut microbial taxa are related to neuronal and astrocytic consequences of cirrhosis-associated brain dysfunction.
Specific Gut and Salivary Microbiota Patterns Are Linked With Different Cognitive Testing Strategies in Minimal Hepatic Encephalopathy
Minimal hepatic encephalopathy (MHE) is epidemic in cirrhosis, but testing strategies often have poor concordance. Altered gut/salivary microbiota occur in cirrhosis and could be related to MHE. Our aim was to determine microbial signatures of individual cognitive tests and define the role of microbiota in the diagnosis of MHE. Outpatients with cirrhosis underwent stool collection and MHE testing with psychometric hepatic encephalopathy score (PHES), inhibitory control test, and EncephalApp Stroop. A subset provided saliva samples. Minimal hepatic encephalopathy diagnosis/concordance between tests was compared. Stool/salivary microbiota were analyzed using 16srRNA sequencing. Microbial profiles were compared between patients with/without MHE on individual tests. Logistic regression was used to evaluate clinical and microbial predictors of MHE diagnosis. Two hundred forty-seven patients with cirrhosis (123 prior overt HE, MELD 13) underwent stool collection and PHES testing; 175 underwent inhibitory control test and 125 underwent Stroop testing. One hundred twelve patients also provided saliva samples. Depending on the modality, 59%-82% of patients had MHE. Intertest Kappa for MHE was 0.15-0.35. Stool and salivary microbiota profiles with MHE were different from those without MHE. Individual microbiota signatures were associated with MHE in specific modalities. However, the relative abundance of Lactobacillaceae in the stool and saliva samples was higher in MHE, regardless of the modality used, whereas autochthonous Lachnospiraceae were higher in those without MHE, especially on PHES. On logistic regression, stool and salivary Lachnospiraceae genera (Ruminococcus and Clostridium XIVb) were associated with good cognition independent of clinical variables. Specific stool and salivary microbial signatures exist for individual cognitive testing strategies in MHE. The presence of specific taxa associated with good cognitive function regardless of modality could potentially be used to circumvent MHE testing.
Covert Hepatic Encephalopathy Is Independently Associated With Poor Survival and Increased Risk of Hospitalization
Despite the high prevalence of covert hepatic encephalopathy (CHE) in cirrhotics without previous overt HE (OHE), its independent impact on predicting clinically relevant outcomes is unclear. The aim of this study was to define the impact of CHE on time to OHE, hospitalization, and death/transplant in prospectively followed up patients without previous OHE. Outpatient cirrhotics without OHE were enrolled and were administered a standard paper-pencil cognitive battery for CHE diagnosis. They were systematically followed up and time to first OHE development, hospitalization (liver-related/unrelated), and transplant/death were compared between CHE and no-CHE patients at baseline using Cox regression. A total of 170 cirrhotic patients (55 years, 58% men, 14 years of education, Model for End-Stage Liver Disease (MELD 9), 53% hepatitis C virus (HCV), 20% nonalcoholic etiology) were included, of whom 56% had CHE. The entire population was followed up for 13.0 ± 14.6 months, during which time 30% developed their first OHE episode, 42% were hospitalized, and 19% had a composite death/transplant outcome. Age, gender, etiology, the MELD score, and CHE status were included in Cox regression models for time to first OHE episode, hospitalization, death, and composite death/transplant outcomes. On Cox regression, despite controlling for MELD, those with CHE had a higher risk of developing OHE (hazard ratio: 2.1, 95% confidence interval 1.01-4.5), hospitalization (hazard ratio: 2.5, 95% confidence interval 1.4-4.5), and death/transplant (hazard ratio: 3.4, 95% confidence interval 1.2-9.7) in the follow-up period. Covert HE is associated with worsened survival and increased risk of hospitalization and OHE development, despite controlling for the MELD score. Strategies to detect and treat CHE may improve these risks.