Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
34,111
result(s) for
"White, Michael T."
Sort by:
Co-infection of the four major Plasmodium species: Effects on densities and gametocyte carriage
by
Kiniboro, Benson
,
Mueller, Ivo
,
Holzschuh, Aurel
in
Aquatic insects
,
Biology and Life Sciences
,
Blood & organ donations
2022
Background Co-infection of the four major species of human malaria parasite Plasmodium falciparum (Pf), P. vivax (Pv), P. malariae (Pm), and P. ovale sp. (Po) is regularly observed, but there is limited understanding of between-species interactions. In particular, little is known about the effects of multiple Plasmodium species co-infections on gametocyte production. Methods We developed molecular assays for detecting asexual and gametocyte stages of Pf, Pv, Pm, and Po. This is the first description of molecular diagnostics for Pm and Po gametocytes. These assays were implemented in a unique epidemiological setting in Papua New Guinea with sympatric transmission of all four Plasmodium species permitting a comprehensive investigation of species interactions. Findings The observed frequency of Pf-Pv co-infection for asexual parasites (14.7%) was higher than expected from individual prevalence rates (23.8%Pf x 47.4%Pv = 11.3%). The observed frequency of co-infection with Pf and Pv gametocytes (4.6%) was higher than expected from individual prevalence rates (13.1%Pf x 28.2%Pv = 3.7%). The excess risk of co-infection was 1.38 (95% confidence interval (CI): 1.09, 1.67) for all parasites and 1.37 (95% CI: 0.95, 1.79) for gametocytes. This excess co-infection risk was partially attributable to malaria infections clustering in some villages. Pf-Pv-Pm triple infections were four times more frequent than expected by chance alone, which could not be fully explained by infections clustering in highly exposed individuals. The effect of co-infection on parasite density was analyzed by systematic comparison of all pairwise interactions. This revealed a significant 6.57-fold increase of Pm density when co-infected with Pf. Pm gametocytemia also increased with Pf co-infection. Conclusions Heterogeneity in exposure to mosquitoes is a key epidemiological driver of Plasmodium co-infection. Among the four co-circulating parasites, Pm benefitted most from co-infection with other species. Beyond this, no general prevailing pattern of suppression or facilitation was identified in pairwise analysis of gametocytemia and parasitemia of the four species. Trial registration This trial is registered with ClinicalTrials.gov, Trial ID: NCT02143934.
Journal Article
Costs and cost-effectiveness of malaria control interventions - a systematic review
by
White, Michael T
,
Ghani, Azra C
,
Conteh, Lesong
in
Africa - epidemiology
,
Asia - epidemiology
,
Biomedical and Life Sciences
2011
Background
The control and elimination of malaria requires expanded coverage of and access to effective malaria control interventions such as insecticide-treated nets (ITNs), indoor residual spraying (IRS), intermittent preventive treatment (IPT), diagnostic testing and appropriate treatment. Decisions on how to scale up the coverage of these interventions need to be based on evidence of programme effectiveness, equity and cost-effectiveness.
Methods
A systematic review of the published literature on the costs and cost-effectiveness of malaria interventions was undertaken. All costs and cost-effectiveness ratios were inflated to 2009 USD to allow comparison of the costs and benefits of several different interventions through various delivery channels, across different geographical regions and from varying costing perspectives.
Results
Fifty-five studies of the costs and forty three studies of the cost-effectiveness of malaria interventions were identified, 78% of which were undertaken in sub-Saharan Africa, 18% in Asia and 4% in South America. The median financial cost of protecting one person for one year was $2.20 (range $0.88-$9.54) for ITNs, $6.70 (range $2.22-$12.85) for IRS, $0.60 (range $0.48-$1.08) for IPT in infants, $4.03 (range $1.25-$11.80) for IPT in children, and $2.06 (range $0.47-$3.36) for IPT in pregnant women. The median financial cost of diagnosing a case of malaria was $4.32 (range $0.34-$9.34). The median financial cost of treating an episode of uncomplicated malaria was $5.84 (range $2.36-$23.65) and the median financial cost of treating an episode of severe malaria was $30.26 (range $15.64-$137.87). Economies of scale were observed in the implementation of ITNs, IRS and IPT, with lower unit costs reported in studies with larger numbers of beneficiaries. From a provider perspective, the median incremental cost effectiveness ratio per disability adjusted life year averted was $27 (range $8.15-$110) for ITNs, $143 (range $135-$150) for IRS, and $24 (range $1.08-$44.24) for IPT.
Conclusions
A transparent evidence base on the costs and cost-effectiveness of malaria control interventions is provided to inform rational resource allocation by donors and domestic health budgets and the selection of optimal packages of interventions by malaria control programmes.
Journal Article
Malaria morbidity and mortality in Ebola-affected countries caused by decreased health-care capacity, and the potential effect of mitigation strategies: a modelling analysis
by
Walker, Patrick G T
,
Griffin, Jamie T
,
Reynolds, Alison
in
Adolescent
,
Child
,
Child, Preschool
2015
The ongoing Ebola epidemic in parts of west Africa largely overwhelmed health-care systems in 2014, making adequate care for malaria impossible and threatening the gains in malaria control achieved over the past decade. We quantified this additional indirect burden of Ebola virus disease.
We estimated the number of cases and deaths from malaria in Guinea, Liberia, and Sierra Leone from Demographic and Health Surveys data for malaria prevalence and coverage of malaria interventions before the Ebola outbreak. We then removed the effect of treatment and hospital care to estimate additional cases and deaths from malaria caused by reduced health-care capacity and potential disruption of delivery of insecticide-treated bednets. We modelled the potential effect of emergency mass drug administration in affected areas on malaria cases and health-care demand.
If malaria care ceased as a result of the Ebola epidemic, untreated cases of malaria would have increased by 45% (95% credible interval 43–49) in Guinea, 88% (83–93) in Sierra Leone, and 140% (135–147) in Liberia in 2014. This increase is equivalent to 3·5 million (95% credible interval 2·6 million to 4·9 million) additional untreated cases, with 10 900 (5700–21 400) additional malaria-attributable deaths. Mass drug administration and distribution of insecticide-treated bednets timed to coincide with the 2015 malaria transmission season could largely mitigate the effect of Ebola virus disease on malaria.
These findings suggest that untreated malaria cases as a result of reduced health-care capacity probably contributed substantially to the morbidity caused by the Ebola crisis. Mass drug administration can be an effective means to mitigate this burden and reduce the number of non-Ebola fever cases within health systems.
UK Medical Research Council, UK Department for International Development, Bill & Melinda Gates Foundation.
Journal Article
Developing sero-diagnostic tests to facilitate Plasmodium vivax Serological Test-and-Treat approaches: modeling the balance between public health impact and overtreatment
by
Mueller, Ivo
,
Obadia, Thomas
,
Robinson, Leanne J.
in
Antimalarials
,
Biomedicine
,
Care and treatment
2022
Background
Eliminating
Plasmodium vivax
will require targeting the hidden liver-stage reservoir of hypnozoites. This necessitates new interventions balancing the benefit of reducing
vivax
transmission against the risk of over-treating some individuals with drugs which may induce haemolysis. By measuring antibodies to a panel of
vivax
antigens, a strategy of serological-testing-and-treatment (
Pv
SeroTAT) can identify individuals with recent blood-stage infections who are likely to carry hypnozoites and target them for radical cure. This provides a potential solution to selectively treat the
vivax
reservoir with 8-aminoquinolines.
Methods
Pv
SeroTAT can identify likely hypnozoite carriers with ~80% sensitivity and specificity. Diagnostic test sensitivities and specificities ranging 50–100% were incorporated into a mathematical model of
vivax
transmission to explore how they affect the risks and benefits of different
Pv
SeroTAT strategies involving hypnozoiticidal regimens. Risk was measured as the rate of overtreatment and benefit as reduction of community-level
vivax
transmission.
Results
Across a wide range of combinations of diagnostic sensitivity and specificity,
Pv
SeroTAT was substantially more effective than bloodstage mass screen and treat strategies and only marginally less effective than mass drug administration. The key test characteristic determining of the benefit of
Pv
SeroTAT strategies is diagnostic sensitivity, with higher values leading to more hypnozoite carriers effectively treated and greater reductions in
vivax
transmission. The key determinant of risk is diagnostic specificity: higher specificity ensures that a lower proportion of uninfected individuals are unnecessarily treated with primaquine. These relationships are maintained in both moderate and low transmission settings (qPCR prevalence 10% and 2%). Increased treatment efficacy and adherence can partially compensate for lower test performance. Multiple rounds of
Pv
SeroTAT with a lower performing test may lead to similar or higher reductions in
vivax
transmission than fewer rounds with a higher performing test, albeit with higher rate of overtreatment.
Conclusions
At current performance,
Pv
SeroTAT is predicted to be a safe and efficacious option for targeting the hypnozoite reservoir towards
vivax
elimination.
P. vivax
sero-diagnostic tests should aim for both high performance and ease of use in the field. The target product profiles informing such development should thus reflect the trade-offs between impact, overtreatment, and ease of programmatic implementation.
Journal Article
Strategies for Understanding and Reducing the Plasmodium vivax and Plasmodium ovale Hypnozoite Reservoir in Papua New Guinean Children: A Randomised Placebo-Controlled Trial and Mathematical Model
by
Kinboro, Benson
,
Silkey, Mariabeth
,
Mueller, Ivo
in
Antimalarials - therapeutic use
,
Assaigs clínics de medicaments
,
Chemical and Drug Induced Liver Injury - prevention & control
2015
The undetectable hypnozoite reservoir for relapsing Plasmodium vivax and P. ovale malarias presents a major challenge for malaria control and elimination in endemic countries. This study aims to directly determine the contribution of relapses to the burden of P. vivax and P. ovale infection, illness, and transmission in Papua New Guinean children.
From 17 August 2009 to 20 May 2010, 524 children aged 5-10 y from East Sepik Province in Papua New Guinea (PNG) participated in a randomised double-blind placebo-controlled trial of blood- plus liver-stage drugs (chloroquine [CQ], 3 d; artemether-lumefantrine [AL], 3 d; and primaquine [PQ], 20 d, 10 mg/kg total dose) (261 children) or blood-stage drugs only (CQ, 3 d; AL, 3 d; and placebo [PL], 20 d) (263 children). Participants, study staff, and investigators were blinded to the treatment allocation. Twenty children were excluded during the treatment phase (PQ arm: 14, PL arm: 6), and 504 were followed actively for 9 mo. During the follow-up time, 18 children (PQ arm: 7, PL arm: 11) were lost to follow-up. Main primary and secondary outcome measures were time to first P. vivax infection (by qPCR), time to first clinical episode, force of infection, gametocyte positivity, and time to first P. ovale infection (by PCR). A basic stochastic transmission model was developed to estimate the potential effect of mass drug administration (MDA) for the prevention of recurrent P. vivax infections. Targeting hypnozoites through PQ treatment reduced the risk of having at least one qPCR-detectable P. vivax or P. ovale infection during 8 mo of follow-up (P. vivax: PQ arm 0.63/y versus PL arm 2.62/y, HR = 0.18 [95% CI 0.14, 0.25], p < 0.001; P. ovale: 0.06 versus 0.14, HR = 0.31 [95% CI 0.13, 0.77], p = 0.011) and the risk of having at least one clinical P. vivax episode (HR = 0.25 [95% CI 0.11, 0.61], p = 0.002). PQ also reduced the molecular force of P. vivax blood-stage infection in the first 3 mo of follow-up (PQ arm 1.90/y versus PL arm 7.75/y, incidence rate ratio [IRR] = 0.21 [95% CI 0.15, 0.28], p < 0.001). Children who received PQ were less likely to carry P. vivax gametocytes (IRR = 0.27 [95% CI 0.19, 0.38], p < 0.001). PQ had a comparable effect irrespective of the presence of P. vivax blood-stage infection at the time of treatment (p = 0.14). Modelling revealed that mass screening and treatment with highly sensitive quantitative real-time PCR, or MDA with blood-stage treatment alone, would have only a transient effect on P. vivax transmission levels, while MDA that includes liver-stage treatment is predicted to be a highly effective strategy for P. vivax elimination. The inclusion of a directly observed 20-d treatment regime maximises the efficiency of hypnozoite clearance but limits the generalisability of results to real-world MDA programmes.
These results suggest that relapses cause approximately four of every five P. vivax infections and at least three of every five P. ovale infections in PNG children and are important in sustaining transmission. MDA campaigns combining blood- and liver-stage treatment are predicted to be a highly efficacious intervention for reducing P. vivax and P. ovale transmission.
ClinicalTrials.gov NCT02143934.
Journal Article
Population-level estimates of the proportion of Plasmodium vivax blood-stage infections attributable to relapses among febrile patients attending Adama Malaria Diagnostic Centre, East Shoa Zone, Oromia, Ethiopia
2017
Background
Malaria is ranked as the leading communicable disease in Ethiopia, where
Plasmodium falciparum
and
Plasmodium vivax
are co-endemic. The incidence of
P. vivax
is usually considered to be less seasonal than
P. falciparum
. Clinical cases of symptomatic
P. falciparum
exhibit notable seasonal variation, driven by rainfall-dependent variation in the abundance of
Anopheles
mosquitoes. A similar peak of clinical cases of
P. vivax
is usually observed during the rainy season. However, the ability of
P. vivax
to relapse causing new blood-stage infections weeks to months after an infectious mosquito bite can lead to substantial differences in seasonal patterns of clinical cases. These cannot be detected with currently available diagnostic tools and are not cleared upon treatment with routinely administered anti-malarial drugs.
Methods
A health- facility based cross-sectional study was conducted in Adama malaria diagnostic centre from May 2015 to April 2016. Finger-prick blood samples were collected for thin and thick blood film preparation from participants seeking treatment for suspected cases of febrile malaria. Informed consent was obtained from each study participant or their guardians. Seasonal patterns in malaria cases were analysed using statistical models, identifying the peaks in cases, and the seasonally varying proportion of
P. vivax
cases attributable to relapses.
Results
The proportion of patients with malaria detectable by light microscopy was 36.1% (1141/3161) of which
P. vivax
,
P. falciparum
, and mixed infections accounted for 71.4, 25.8 and 2.8%, respectively. Of the febrile patients diagnosed, 2134 (67.5%) were males and 1919 (60.7%) were urban residents. The model identified a primary peak in
P. falciparum
and
P. vivax
cases from August to October, as well as a secondary peak of
P. vivax
cases from February to April attributable to cases arising from relapses. During the secondary peak of
P. vivax
cases approximately 77% (95% CrI 68, 84%) of cases are estimated to be attributable to relapses. During the primary peak from August to October, approximately 40% (95% CrI 29, 57%) of cases are estimated to be attributable to relapses.
Discussion
It is not possible to diagnose whether a
P. vivax
case has been caused by blood-stage infection from a mosquito bite or a relapse. However, differences in seasonal patterns of
P. falciparum
and
P. vivax
cases can be used to estimate the population-level proportion of
P. vivax
cases attributable to relapses. These observations have important implications for the epidemiological assessment of
vivax
malaria, and initiating therapy that is effective against both blood stages and relapses.
Journal Article
Mathematical modelling of the impact of expanding levels of malaria control interventions on Plasmodium vivax
by
Walker, Patrick
,
Laman, Moses
,
Mueller, Ivo
in
631/326/1762
,
631/326/41/1470
,
692/699/255/1629
2018
Plasmodium vivax
poses unique challenges for malaria control and elimination, notably the potential for relapses to maintain transmission in the face of drug-based treatment and vector control strategies. We developed an individual-based mathematical model of
P. vivax
transmission calibrated to epidemiological data from Papua New Guinea (PNG). In many settings in PNG, increasing bed net coverage is predicted to reduce transmission to less than 0.1% prevalence by light microscopy, however there is substantial risk of rebounds in transmission if interventions are removed prematurely. In several high transmission settings, model simulations predict that combinations of existing interventions are not sufficient to interrupt
P. vivax
transmission. This analysis highlights the potential options for the future of
P. vivax
control: maintaining existing public health gains by keeping transmission suppressed through indefinite distribution of interventions; or continued development of strategies based on existing and new interventions to push for further reduction and towards elimination.
Plasmodium vivax
poses a unique challenge for malaria elimination worldwide. Here, White et al. develop an individual-based mathematical model of
P. vivax
transmission and evaluate intervention strategies in Papua New Guinea.
Journal Article
Public health impact and cost-effectiveness of the RTS,S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models
by
Penny, Melissa A
,
Jit, Mark
,
Ghani, Azra C
in
Africa - epidemiology
,
Clinical trials
,
Clinical Trials, Phase III as Topic
2016
The phase 3 trial of the RTS,S/AS01 malaria vaccine candidate showed modest efficacy of the vaccine against Plasmodium falciparum malaria, but was not powered to assess mortality endpoints. Impact projections and cost-effectiveness estimates for longer timeframes than the trial follow-up and across a range of settings are needed to inform policy recommendations. We aimed to assess the public health impact and cost-effectiveness of routine use of the RTS,S/AS01 vaccine in African settings.
We compared four malaria transmission models and their predictions to assess vaccine cost-effectiveness and impact. We used trial data for follow-up of 32 months or longer to parameterise vaccine protection in the group aged 5–17 months. Estimates of cases, deaths, and disability-adjusted life-years (DALYs) averted were calculated over a 15 year time horizon for a range of levels of Plasmodium falciparum parasite prevalence in 2–10 year olds (PfPR2–10; range 3–65%). We considered two vaccine schedules: three doses at ages 6, 7·5, and 9 months (three-dose schedule, 90% coverage) and including a fourth dose at age 27 months (four-dose schedule, 72% coverage). We estimated cost-effectiveness in the presence of existing malaria interventions for vaccine prices of US$2–10 per dose.
In regions with a PfPR2–10 of 10–65%, RTS,S/AS01 is predicted to avert a median of 93 940 (range 20 490–126 540) clinical cases and 394 (127–708) deaths for the three-dose schedule, or 116 480 (31 450–160 410) clinical cases and 484 (189–859) deaths for the four-dose schedule, per 100 000 fully vaccinated children. A positive impact is also predicted at a PfPR2–10 of 5–10%, but there is little impact at a prevalence of lower than 3%. At $5 per dose and a PfPR2–10 of 10–65%, we estimated a median incremental cost-effectiveness ratio compared with current interventions of $30 (range 18–211) per clinical case averted and $80 (44–279) per DALY averted for the three-dose schedule, and of $25 (16–222) and $87 (48–244), respectively, for the four-dose schedule. Higher ICERs were estimated at low PfPR2–10 levels.
We predict a significant public health impact and high cost-effectiveness of the RTS,S/AS01 vaccine across a wide range of settings. Decisions about implementation will need to consider levels of malaria burden, the cost-effectiveness and coverage of other malaria interventions, health priorities, financing, and the capacity of the health system to deliver the vaccine.
PATH Malaria Vaccine Initiative; Bill & Melinda Gates Foundation; Global Good Fund; Medical Research Council; UK Department for International Development; GAVI, the Vaccine Alliance; WHO.
Journal Article
Heterogeneity in response to serological exposure markers of recent Plasmodium vivax infections in contrasting epidemiological contexts
by
Sattabongkot, Jetsumon
,
Mueller, Ivo
,
Vinetz, Joseph M.
in
Adaptive immunology
,
Antibody Formation
,
Antigen-antibody reactions
2021
Antibody responses as serological markers of Plasmodium vivax infection have been shown to correlate with exposure, but little is known about the other factors that affect antibody responses in naturally infected people from endemic settings. To address this question, we studied IgG responses to novel serological exposure markers (SEMs) of P. vivax in three settings with different transmission intensity.
We validated a panel of 34 SEMs in a Peruvian cohort with up to three years' longitudinal follow-up using a multiplex platform and compared results to data from cohorts in Thailand and Brazil. Linear regression models were used to characterize the association between antibody responses and age, the number of detected blood-stage infections during follow-up, and time since previous infection. Receiver Operating Characteristic (ROC) analysis was used to test the performance of SEMs to identify P. vivax infections in the previous 9 months.
Antibody titers were associated with age, the number of blood-stage infections, and time since previous P. vivax infection in all three study sites. The association between antibody titers and time since previous P. vivax infection was stronger in the low transmission settings of Thailand and Brazil compared to the higher transmission setting in Peru. Of the SEMs tested, antibody responses to RBP2b had the highest performance for classifying recent exposure in all sites, with area under the ROC curve (AUC) = 0.83 in Thailand, AUC = 0.79 in Brazil, and AUC = 0.68 in Peru.
In low transmission settings, P. vivax SEMs can accurately identify individuals with recent blood-stage infections. In higher transmission settings, the accuracy of this approach diminishes substantially. We recommend using P. vivax SEMs in low transmission settings pursuing malaria elimination, but they are likely to be less effective in high transmission settings focused on malaria control.
Journal Article
The utility of serology for elimination surveillance of trachoma
by
Bailey, Robin L.
,
Macleod, Colin
,
Pinsent, Amy
in
631/114/2397
,
692/699/255/1318
,
692/700/1538
2018
Robust surveillance methods are needed for trachoma control and recrudescence monitoring, but existing methods have limitations. Here, we analyse data from nine trachoma-endemic populations and provide operational thresholds for interpretation of serological data in low-transmission and post-elimination settings. Analyses with sero-catalytic and antibody acquisition models provide insights into transmission history within each population. To accurately estimate sero-conversion rates (SCR) for trachoma in populations with high-seroprevalence in adults, the model accounts for secondary exposure to
Chlamydia trachomatis
due to urogenital infection. We estimate the population half-life of sero-reversion for anti-Pgp3 antibodies to be 26 (95% credible interval (CrI): 21–34) years. We show SCRs below 0.015 (95% confidence interval (CI): 0.0–0.049) per year correspond to a prevalence of trachomatous inflammation—follicular below 5%, the current threshold for elimination of active trachoma as a public health problem. As global trachoma prevalence declines, we may need cross-sectional serological survey data to inform programmatic decisions.
Robust surveillance methods are needed for trachoma control and recrudescence monitoring, but existing methods have limitations. Here, Pinsent et al. analyse data from nine trachoma-endemic populations and provide operational thresholds for interpretation of serological data in low transmission and post-elimination settings.
Journal Article