Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
41
result(s) for
"Whiteley, Aaron T."
Sort by:
An In Vivo Selection Identifies Listeria monocytogenes Genes Required to Sense the Intracellular Environment and Activate Virulence Factor Expression
by
Reniere, Michelle L.
,
Portnoy, Daniel A.
,
Whiteley, Aaron T.
in
Animals
,
Bacteria
,
Bacterial Proteins - biosynthesis
2016
Listeria monocytogenes is an environmental saprophyte and facultative intracellular bacterial pathogen with a well-defined life-cycle that involves escape from a phagosome, rapid cytosolic growth, and ActA-dependent cell-to-cell spread, all of which are dependent on the master transcriptional regulator PrfA. The environmental cues that lead to temporal and spatial control of L. monocytogenes virulence gene expression are poorly understood. In this study, we took advantage of the robust up-regulation of ActA that occurs intracellularly and expressed Cre recombinase from the actA promoter and 5' untranslated region in a strain in which loxP sites flanked essential genes, so that activation of actA led to bacterial death. Upon screening for transposon mutants that survived intracellularly, six genes were identified as necessary for ActA expression. Strikingly, most of the genes, including gshF, spxA1, yjbH, and ohrA, are predicted to play important roles in bacterial redox regulation. The mutants identified in the genetic selection fell into three broad categories: (1) those that failed to reach the cytosolic compartment; (2) mutants that entered the cytosol, but failed to activate the master virulence regulator PrfA; and (3) mutants that entered the cytosol and activated transcription of actA, but failed to synthesize it. The identification of mutants defective in vacuolar escape suggests that up-regulation of ActA occurs in the host cytosol and not the vacuole. Moreover, these results provide evidence for two non-redundant cytosolic cues; the first results in allosteric activation of PrfA via increased glutathione levels and transcriptional activation of actA while the second results in translational activation of actA and requires yjbH. Although the precise host cues have not yet been identified, we suggest that intracellular redox stress occurs as a consequence of both host and pathogen remodeling their metabolism upon infection.
Journal Article
DnaJ mediates phage sensing by the bacterial NLR-related protein bNACHT25
by
Conte, Amy N.
,
Ruchel, Madison E.
,
Ridgeway, Samantha M.
in
Bacteria
,
Bacterial proteins
,
Bacteriophages
2025
Bacteria encode a wide range of antiphage systems and a subset of these proteins are homologous to components of the human innate immune system. Mammalian nucleotide-binding and leucine-rich repeat containing proteins (NLRs) and bacterial NLR-related proteins use a central NACHT domain to link detection of infection with initiation of an antimicrobial response. Bacterial NACHT proteins provide defense against both DNA and RNA phages. Here we investigate the mechanism of phage detection by the bacterial NLR-related protein bNACHT25 in E. coli . bNACHT25 was specifically activated by Emesvirus ssRNA phages and analysis of MS2 phage escaper mutants that evaded detection revealed a critical role for Coat Protein (CP). A genetic assay showed CP was sufficient to activate bNACHT25 but the two proteins did not directly interact. Instead, we found bNACHT25 requires the host chaperone DnaJ to detect CP and protect against phage. Our data support a model in which bNACHT25 detects a wide range of phages using an indirect mechanism that may involve guarding a host cell process rather than binding a specific phage-derived molecule.
Journal Article
(p)ppGpp and c-di-AMP Homeostasis Is Controlled by CbpB in Listeria monocytogenes
2020
Bacteria must efficiently maintain homeostasis of essential molecules to survive in the environment. We found that the levels of c-di-AMP and (p)ppGpp, two nucleotide second messengers that are highly conserved throughout the microbial world, coexist in a homeostatic loop in the facultative intracellular pathogen Listeria monocytogenes . Here, we found that cyclic di-AMP binding protein B (CbpB) acts as a c-di-AMP sensor that promotes the synthesis of (p)ppGpp by binding to RelA when c-di-AMP levels are low. Addition of c-di-AMP prevented RelA activation by binding and sequestering CbpB. Previous studies showed that (p)ppGpp binds and inhibits c-di-AMP phosphodiesterases, resulting in an increase in c-di-AMP. This pathway is controlled via direct enzymatic regulation and indicates an additional mechanism of ribosome-independent stringent activation. The facultative intracellular pathogen Listeria monocytogenes , like many related Firmicutes , uses the nucleotide second messenger cyclic di-AMP (c-di-AMP) to adapt to changes in nutrient availability, osmotic stress, and the presence of cell wall-acting antibiotics. In rich medium, c-di-AMP is essential; however, mutations in cbpB , the gene encoding c-di-AMP binding protein B, suppress essentiality. In this study, we identified that the reason for cbpB -dependent essentiality is through induction of the stringent response by RelA. RelA is a bifunctional RelA/SpoT homolog (RSH) that modulates levels of (p)ppGpp, a secondary messenger that orchestrates the stringent response through multiple allosteric interactions. We performed a forward genetic suppressor screen on bacteria lacking c-di-AMP to identify genomic mutations that rescued growth while cbpB was constitutively expressed and identified mutations in the synthetase domain of RelA. The synthetase domain of RelA was also identified as an interacting partner of CbpB in a yeast-2-hybrid screen. Biochemical analyses confirmed that free CbpB activates RelA while c-di-AMP inhibits its activation. We solved the crystal structure of CbpB bound and unbound to c-di-AMP and provide insight into the region important for c-di-AMP binding and RelA activation. The results of this study show that CbpB completes a homeostatic regulatory circuit between c-di-AMP and (p)ppGpp in Listeria monocytogenes . IMPORTANCE Bacteria must efficiently maintain homeostasis of essential molecules to survive in the environment. We found that the levels of c-di-AMP and (p)ppGpp, two nucleotide second messengers that are highly conserved throughout the microbial world, coexist in a homeostatic loop in the facultative intracellular pathogen Listeria monocytogenes . Here, we found that cyclic di-AMP binding protein B (CbpB) acts as a c-di-AMP sensor that promotes the synthesis of (p)ppGpp by binding to RelA when c-di-AMP levels are low. Addition of c-di-AMP prevented RelA activation by binding and sequestering CbpB. Previous studies showed that (p)ppGpp binds and inhibits c-di-AMP phosphodiesterases, resulting in an increase in c-di-AMP. This pathway is controlled via direct enzymatic regulation and indicates an additional mechanism of ribosome-independent stringent activation.
Journal Article
Cyclic di-AMP Is Critical for Listeria monocytogenes Growth, Cell Wall Homeostasis, and Establishment of Infection
by
Portnoy, Daniel A.
,
Woodward, Joshua J.
,
Sauer, John-Demian
in
Acids
,
Adenylate cyclase
,
Animals
2013
Listeria monocytogenes infection leads to robust induction of an innate immune signaling pathway referred to as the cytosolic surveillance pathway (CSP), characterized by expression of beta interferon (IFN-β) and coregulated genes. We previously identified the IFN-β stimulatory ligand as secreted cyclic di-AMP. Synthesis of c-di-AMP in L. monocytogenes is catalyzed by the diadenylate cyclase DacA, and multidrug resistance transporters are necessary for secretion. To identify additional bacterial factors involved in L. monocytogenes detection by the CSP, we performed a forward genetic screen for mutants that induced altered levels of IFN-β. One mutant that stimulated elevated levels of IFN-β harbored a transposon insertion in the gene lmo0052 . Lmo0052, renamed here PdeA, has homology to a cyclic di-AMP phosphodiesterase, GdpP (formerly YybT), of Bacillus subtilis and is able to degrade c-di-AMP to the linear dinucleotide pApA. Reduction of c-di-AMP levels by conditional depletion of the di-adenylate cyclase DacA or overexpression of PdeA led to marked decreases in growth rates, both in vitro and in macrophages. Additionally, mutants with altered levels of c-di-AMP had different susceptibilities to peptidoglycan-targeting antibiotics, suggesting that the molecule may be involved in regulating cell wall homeostasis. During intracellular infection, increases in c-di-AMP production led to hyperactivation of the CSP. Conditional depletion of dacA also led to increased IFN-β expression and a concomitant increase in host cell pyroptosis, a result of increased bacteriolysis and subsequent bacterial DNA release. These data suggest that c-di-AMP coordinates bacterial growth, cell wall stability, and responses to stress and plays a crucial role in the establishment of bacterial infection. IMPORTANCE Listeria monocytogenes is a Gram-positive intracellular pathogen and the causative agent of the food-borne illness listeriosis. Upon infection, L. monocytogenes stimulates expression of IFN-β and coregulated genes dependent upon host detection of a secreted bacterial signaling nucleotide, c-di-AMP. Using a forward genetic screen for mutants that induced high levels of host IFN-β expression, we identified a c-di-AMP phosphodiesterase, PdeA, that degrades c-di-AMP. Here we characterize L. monocytogenes mutants that express enhanced or diminished levels of c-di-AMP. Decreased c-di-AMP levels by conditional depletion of the diadenylate cyclase (DacA) or overexpression of PdeA attenuated bacterial growth and led to bacteriolysis, suggesting that its production is essential for viability and may regulate cell wall metabolism. Mutants lacking PdeA had a distinct transcriptional profile, which may provide insight into additional roles for the molecule. This work demonstrates that c-di-AMP is a critical signaling molecule required for bacterial replication, cell wall stability, and pathogenicity. Listeria monocytogenes is a Gram-positive intracellular pathogen and the causative agent of the food-borne illness listeriosis. Upon infection, L. monocytogenes stimulates expression of IFN-β and coregulated genes dependent upon host detection of a secreted bacterial signaling nucleotide, c-di-AMP. Using a forward genetic screen for mutants that induced high levels of host IFN-β expression, we identified a c-di-AMP phosphodiesterase, PdeA, that degrades c-di-AMP. Here we characterize L. monocytogenes mutants that express enhanced or diminished levels of c-di-AMP. Decreased c-di-AMP levels by conditional depletion of the diadenylate cyclase (DacA) or overexpression of PdeA attenuated bacterial growth and led to bacteriolysis, suggesting that its production is essential for viability and may regulate cell wall metabolism. Mutants lacking PdeA had a distinct transcriptional profile, which may provide insight into additional roles for the molecule. This work demonstrates that c-di-AMP is a critical signaling molecule required for bacterial replication, cell wall stability, and pathogenicity.
Journal Article
Activation of the Listeria monocytogenes Virulence Program by a Reducing Environment
by
Portnoy, Daniel A.
,
Peterson, Bret N.
,
Portman, Jonathan L.
in
Allosteric properties
,
Animals
,
Bacteria
2017
Upon entry into the host cell cytosol, the facultative intracellular pathogen Listeria monocytogenes coordinates the expression of numerous essential virulence factors by allosteric binding of glutathione (GSH) to the Crp-Fnr family transcriptional regulator PrfA. Here, we report that robust virulence gene expression can be recapitulated by growing bacteria in a synthetic medium containing GSH or other chemical reducing agents. Bacteria grown under these conditions were 45-fold more virulent in an acute murine infection model and conferred greater immunity to a subsequent lethal challenge than bacteria grown in conventional media. During cultivation in vitro , PrfA activation was completely dependent on the intracellular levels of GSH, as a glutathione synthase mutant (Δ gshF ) was activated by exogenous GSH but not reducing agents. PrfA activation was repressed in a synthetic medium supplemented with oligopeptides, but the repression was relieved by stimulation of the stringent response. These data suggest that cytosolic L. monocytogenes interprets a combination of metabolic and redox cues as a signal to initiate robust virulence gene expression in vivo . IMPORTANCE Intracellular pathogens are responsible for much of the worldwide morbidity and mortality from infectious diseases. These pathogens have evolved various strategies to proliferate within individual cells of the host and avoid the host immune response. Through cellular invasion or the use of specialized secretion machinery, all intracellular pathogens must access the host cell cytosol to establish their replicative niches. Determining how these pathogens sense and respond to the intracellular compartment to establish a successful infection is critical to our basic understanding of the pathogenesis of each organism and for the rational design of therapeutic interventions. Listeria monocytogenes is a model intracellular pathogen with robust in vitro and in vivo infection models. Studies of the host-sensing and downstream signaling mechanisms evolved by L. monocytogenes often describe themes of pathogenesis that are broadly applicable to less tractable pathogens. Here, we describe how bacteria use external redox states as a cue to activate virulence. Intracellular pathogens are responsible for much of the worldwide morbidity and mortality from infectious diseases. These pathogens have evolved various strategies to proliferate within individual cells of the host and avoid the host immune response. Through cellular invasion or the use of specialized secretion machinery, all intracellular pathogens must access the host cell cytosol to establish their replicative niches. Determining how these pathogens sense and respond to the intracellular compartment to establish a successful infection is critical to our basic understanding of the pathogenesis of each organism and for the rational design of therapeutic interventions. Listeria monocytogenes is a model intracellular pathogen with robust in vitro and in vivo infection models. Studies of the host-sensing and downstream signaling mechanisms evolved by L. monocytogenes often describe themes of pathogenesis that are broadly applicable to less tractable pathogens. Here, we describe how bacteria use external redox states as a cue to activate virulence.
Journal Article
Conservation and similarity of bacterial and eukaryotic innate immunity
2024
Pathogens are ubiquitous and a constant threat to their hosts, which has led to the evolution of sophisticated immune systems in bacteria, archaea and eukaryotes. Bacterial immune systems encode an astoundingly large array of antiviral (antiphage) systems, and recent investigations have identified unexpected similarities between the immune systems of bacteria and animals. In this Review, we discuss advances in our understanding of the bacterial innate immune system and highlight the components, strategies and pathogen restriction mechanisms conserved between bacteria and eukaryotes. We summarize evidence for the hypothesis that components of the human immune system originated in bacteria, where they first evolved to defend against phages. Further, we discuss shared mechanisms that pathogens use to overcome host immune pathways and unexpected similarities between bacterial immune systems and interbacterial antagonism. Understanding the shared evolutionary path of immune components across domains of life and the successful strategies that organisms have arrived at to restrict their pathogens will enable future development of therapeutics that activate the human immune system for the precise treatment of disease.In this Review, Ledvina and Whiteley highlight the key similarities between eukaryotic and bacterial innate immune systems, exploring conserved immune components and signalling strategies, as well as conserved mechanisms for pathogen restriction.
Journal Article
An E1–E2 fusion protein primes antiviral immune signalling in bacteria
2023
In all organisms, innate immune pathways sense infection and rapidly activate potent immune responses while avoiding inappropriate activation (autoimmunity). In humans, the innate immune receptor cyclic GMP–AMP synthase (cGAS) detects viral infection to produce the nucleotide second messenger cyclic GMP–AMP (cGAMP), which initiates stimulator of interferon genes (STING)-dependent antiviral signalling
1
. Bacteria encode evolutionary predecessors of cGAS called cGAS/DncV-like nucleotidyltransferases
2
(CD-NTases), which detect bacteriophage infection and produce diverse nucleotide second messengers
3
. How bacterial CD-NTase activation is controlled remains unknown. Here we show that CD-NTase-associated protein 2 (Cap2) primes bacterial CD-NTases for activation through a ubiquitin transferase-like mechanism. A cryo-electron microscopy structure of the Cap2–CD-NTase complex reveals Cap2 as an all-in-one ubiquitin transferase-like protein, with distinct domains resembling eukaryotic E1 and E2 proteins. The structure captures a reactive-intermediate state with the CD-NTase C terminus positioned in the Cap2 E1 active site and conjugated to AMP. Cap2 conjugates the CD-NTase C terminus to a target molecule that primes the CD-NTase for increased cGAMP production. We further demonstrate that a specific endopeptidase, Cap3, balances Cap2 activity by cleaving CD-NTase–target conjugates. Our data demonstrate that bacteria control immune signalling using an ancient, minimized ubiquitin transferase-like system and provide insight into the evolution of the E1 and E2 machinery across domains of life.
This study demonstrates that bacteria use a ubiquitin transferase-like enzyme to prime cGAS/DncV-like nucleotidyltransferase activation and use a deubiquitinase-like enzyme to decrease activity.
Journal Article
Bacterial cGAS-like enzymes synthesize diverse nucleotide signals
2019
Cyclic dinucleotides (CDNs) have central roles in bacterial homeostasis and virulence by acting as nucleotide second messengers. Bacterial CDNs also elicit immune responses during infection when they are detected by pattern-recognition receptors in animal cells. Here we perform a systematic biochemical screen for bacterial signalling nucleotides and discover a large family of cGAS/DncV-like nucleotidyltransferases (CD-NTases) that use both purine and pyrimidine nucleotides to synthesize a diverse range of CDNs. A series of crystal structures establish CD-NTases as a structurally conserved family and reveal key contacts in the enzyme active-site lid that direct purine or pyrimidine selection. CD-NTase products are not restricted to CDNs and also include an unexpected class of cyclic trinucleotide compounds. Biochemical and cellular analyses of CD-NTase signalling nucleotides demonstrate that these cyclic di- and trinucleotides activate distinct host receptors and thus may modulate the interaction of both pathogens and commensal microbiota with their animal and plant hosts.
A bacterial family of cGAS/DncV-like nucleotidyltransferases synthesizes a diverse range of cyclic dinucleotide and trinucleotide compounds that are likely to modulate the interaction of both pathogens and commensal microbiota with their animal and plant hosts.
Journal Article
Glutathione activates virulence gene expression of an intracellular pathogen
2015
Intracellular pathogens are responsible for much of the world-wide morbidity and mortality due to infectious diseases. To colonize their hosts successfully, pathogens must sense their environment and regulate virulence gene expression appropriately. Accordingly, on entry into mammalian cells, the facultative intracellular bacterial pathogen
Listeria monocytogenes
remodels its transcriptional program by activating the master virulence regulator PrfA. Here we show that bacterial and host-derived glutathione are required to activate PrfA. In this study a genetic selection led to the identification of a bacterial mutant in glutathione synthase that exhibited reduced virulence gene expression and was attenuated 150-fold in mice. Genome sequencing of suppressor mutants that arose spontaneously
in vivo
revealed a single nucleotide change in
prfA
that locks the protein in the active conformation (PrfA*) and completely bypassed the requirement for glutathione during infection. Biochemical and genetic studies support a model in which glutathione-dependent PrfA activation is mediated by allosteric binding of glutathione to PrfA. Whereas glutathione and other low-molecular-weight thiols have important roles in redox homeostasis in all forms of life, here we demonstrate that glutathione represents a critical signalling molecule that activates the virulence of an intracellular pathogen.
This study shows that glutathione, a ubiquitous antioxidant, is also a critical signalling molecule that allosterically activates the master virulence regulator in the intracellular pathogen
Listeria monocytogenes
.
Glutathione signals promote
Listeria
pathogenicity
To successfully colonize their hosts, intracellular pathogens must be able to sense their environment and modulate virulence gene expression. For instance, when
Listeria monocytogenes
infects host cells, it remodels its transcriptional program through activation of the master regulator PrfA. Previous work has suggested that PrfA is allosterically regulated by a small molecule activator, specific to the host intracellular environment, but the identity of this small molecule has proven elusive. Here Daniel Portnoy and colleagues show that bacterial and host-derived glutathione is essential for
L. monocytogenes
pathogenesis, but not via its canonical role in redox homeostasis. Rather, glutathione activates PrfA by acting as the previously predicted allosteric modulator.
Journal Article