Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
44 result(s) for "Whiteman, Christopher"
Sort by:
The relationship between epigenetic age and the hallmarks of aging in human cells
Epigenetic clocks are mathematically derived age estimators that are based on combinations of methylation values that change with age at specific CpGs in the genome. These clocks are widely used to measure the age of tissues and cells 1,2 . The discrepancy between epigenetic age (EpiAge), as estimated by these clocks, and chronological age is referred to as EpiAge acceleration. Epidemiological studies have linked EpiAge acceleration to a wide variety of pathologies, health states, lifestyle, mental state and environmental factors 2 , indicating that epigenetic clocks tap into critical biological processes that are involved in aging. Despite the importance of this inference, the mechanisms underpinning these clocks remained largely uncharacterized and unelucidated. Here, using primary human cells, we set out to investigate whether epigenetic aging is the manifestation of one or more of the aging hallmarks previously identified 3 . We show that although epigenetic aging is distinct from cellular senescence, telomere attrition and genomic instability, it is associated with nutrient sensing, mitochondrial activity and stem cell composition.
International Business Cycles: World, Region, and Country-Specific Factors
The paper investigates the common dynamic properties of business-cycle fluctuations across countries, regions, and the world. We employ a Bayesian dynamic latent factor model to estimate common components in macroeconomic aggregates (output, consumption, and investment) in a 60-country sample covering seven regions of the world. The results indicate that a common world factor is an important source of volatility for aggregates in most countries, providing evidence for a world business cycle. We find that region-specific factors play only a minor role in explaining fluctuations in economic activity. We also document similarities and differences across regions, countries, and aggregates.
Characterization of the Melanoma miRNAome by Deep Sequencing
MicroRNAs (miRNAs) are 18-23 nucleotide non-coding RNAs that regulate gene expression in a sequence specific manner. Little is known about the repertoire and function of miRNAs in melanoma or the melanocytic lineage. We therefore undertook a comprehensive analysis of the miRNAome in a diverse range of pigment cells including: melanoblasts, melanocytes, congenital nevocytes, acral, mucosal, cutaneous and uveal melanoma cells. We sequenced 12 small RNA libraries using Illumina's Genome Analyzer II platform. This massively parallel sequencing approach of a diverse set of melanoma and pigment cell libraries revealed a total of 539 known mature and mature-star sequences, along with the prediction of 279 novel miRNA candidates, of which 109 were common to 2 or more libraries and 3 were present in all libraries. Some of the novel candidate miRNAs may be specific to the melanocytic lineage and as such could be used as biomarkers to assist in the early detection of distant metastases by measuring the circulating levels in blood. Follow up studies of the functional roles of these pigment cell miRNAs and the identification of the targets should shed further light on the development and progression of melanoma.
Advancing Pyrogen Testing for Vaccines with Inherent Pyrogenicity: Development of a Novel Reporter Cell-Based Monocyte Activation Test (MAT)
Background/Objectives: Pyrogens, fever-inducing substances from biological or environmental sources, are recognized by Toll-like receptors (TLRs) predominantly expressed by human monocytes and represent a critical quality attribute (CQA) for pharmaceutical safety. The rabbit pyrogen test (RPT), widely used for pyrogen assessment, suffers from high variability, limited accuracy, and poor reproducibility, particularly for vaccines containing inherent pyrogens such as outer membrane protein complex (OMPC)-based vaccines. Existing in vitro alternatives using peripheral blood mononuclear cells (PBMCs) are challenged by donor-to-donor variability and the operational complexity of ELISA readouts. To support the 3Rs (Refinement, Reduction, Replacement) and provide a more reliable quality control (QC) method, we developed a reporter cell–based monocyte activation test (MAT) suitable for release testing. Methods: We screened human monocytic reporter cell lines engineered with NFκB-responsive promoter elements driving a luminescent reporter. Reporter cells were treated with diverse endotoxin and non-endotoxin pyrogens and luminescence was quantified after stimulation. Selected THP-1-derived reporter cells were used to develop an MAT for OMPC. Assay performance was evaluated following validation guidelines: linearity, accuracy, precision, analytical range (relative to a reference lot), and robustness under deliberate parameter variations. Results: The THP-1 reporter cells could detect a wide range of pyrogens via simple luminescence readouts. For OMPC testing, the MAT demonstrated strong linearity (R2 ≥ 0.99), accuracy with relative bias within ±10.3%, and high precision (overall %RSD ≤ 6.9%) across the 25–300% range. Deliberate variations in assay parameters did not materially affect performance, indicating robustness appropriate for routine release testing. Conclusions: The implementation of reporter cell-based MAT assays enhances consistency, reliability, and efficiency in evaluating the pyrogenicity and safety of drug products, supporting global initiatives to minimize animal testing while ensuring regulatory compliance.
A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma
Whole-genome sequencing identifies a novel germline variant in the oncogene MITF , which is associated with the development of melanoma. MITF , a melanoma predisposition gene Two papers in this issue of Nature demonstrate that missense substitutions in the gene encoding for microphthalmia-associated transcription factor (MITF) are associated with susceptibility to melanoma and renal cell carcinoma. Functional analysis shows that the variant has impaired sumoylation that leads to differential regulation of several MITF targets, and promotes tumour cell clonogenicity, migration and invasion. So far, two genes associated with familial melanoma have been identified, accounting for a minority of genetic risk in families. Mutations in CDKN2A account for approximately 40% of familial cases 1 , and predisposing mutations in CDK4 have been reported in a very small number of melanoma kindreds 2 . Here we report the whole-genome sequencing of probands from several melanoma families, which we performed in order to identify other genes associated with familial melanoma. We identify one individual carrying a novel germline variant (coding DNA sequence c.G1075A; protein sequence p.E318K; rs149617956) in the melanoma-lineage-specific oncogene microphthalmia-associated transcription factor ( MITF ). Although the variant co-segregated with melanoma in some but not all cases in the family, linkage analysis of 31 families subsequently identified to carry the variant generated a log of odds (lod) score of 2.7 under a dominant model, indicating E318K as a possible intermediate risk variant. Consistent with this, the E318K variant was significantly associated with melanoma in a large Australian case–control sample. Likewise, it was similarly associated in an independent case–control sample from the United Kingdom. In the Australian sample, the variant allele was significantly over-represented in cases with a family history of melanoma, multiple primary melanomas, or both. The variant allele was also associated with increased naevus count and non-blue eye colour. Functional analysis of E318K showed that MITF encoded by the variant allele had impaired sumoylation and differentially regulated several MITF targets. These data indicate that MITF is a melanoma-predisposition gene and highlight the utility of whole-genome sequencing to identify novel rare variants associated with disease susceptibility.
Extended Reality–Enhanced Mental Health Consultation Training: Quantitative Evaluation Study
The use of extended reality (XR) technologies in health care can potentially address some of the significant resource and time constraints related to delivering training for health care professionals. While substantial progress in realizing this potential has been made across several domains, including surgery, anatomy, and rehabilitation, the implementation of XR in mental health training, where nuanced humanistic interactions are central, has lagged. Given the growing societal and health care service need for trained mental health and care workers, coupled with the heterogeneity of exposure during training and the shortage of placement opportunities, we explored the feasibility and utility of a novel XR tool for mental health consultation training. Specifically, we set out to evaluate a training simulation created through collaboration among software developers, clinicians, and learning technologists, in which users interact with a virtual patient, \"Stacey,\" through a virtual reality or augmented reality head-mounted display. The tool was designed to provide trainee health care professionals with an immersive experience of a consultation with a patient presenting with perinatal mental health symptoms. Users verbally interacted with the patient, and a human instructor selected responses from a repository of prerecorded voice-acted clips. In a pilot experiment, we confirmed the face validity and usability of this platform for perinatal and primary care training with subject-matter experts. In our follow-up experiment, we delivered personalized 1-hour training sessions to 123 participants, comprising mental health nursing trainees, general practitioner doctors in training, and students in psychology and medicine. This phase involved a comprehensive evaluation focusing on usability, validity, and both cognitive and affective learning outcomes. We found significant enhancements in learning metrics across all participant groups. Notably, there was a marked increase in understanding (P<.001) and motivation (P<.001), coupled with decreased anxiety related to mental health consultations (P<.001). There were also significant improvements to considerations toward careers in perinatal mental health (P<.001). Our findings show, for the first time, that XR can be used to provide an effective, standardized, and reproducible tool for trainees to develop their mental health consultation skills. We suggest that XR could provide a solution to overcoming the current resource challenges associated with equipping current and future health care professionals, which are likely to be exacerbated by workforce expansion plans.
Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3
Stuart MacGregor and colleagues report the results of a genome-wide association study for melanoma susceptibility in an Australian population. They identify a new melanoma susceptibility locus on chromosome 1. We performed a genome-wide association study of melanoma in a discovery cohort of 2,168 Australian individuals with melanoma and 4,387 control individuals. In this discovery phase, we confirm several previously characterized melanoma-associated loci at MC1R , ASIP and MTAP – CDKN2A . We selected variants at nine loci for replication in three independent case-control studies (Europe: 2,804 subjects with melanoma, 7,618 control subjects; United States 1: 1,804 subjects with melanoma, 1,026 control subjects; United States 2: 585 subjects with melanoma, 6,500 control subjects). The combined meta-analysis of all case-control studies identified a new susceptibility locus at 1q21.3 (rs7412746, P = 9.0 × 10 −11 , OR in combined replication cohorts of 0.89 (95% CI 0.85–0.95)). We also show evidence suggesting that melanoma associates with 1q42.12 (rs3219090, P = 9.3 × 10 −8 ). The associated variants at the 1q21.3 locus span a region with ten genes, and plausible candidate genes for melanoma susceptibility include ARNT and SETDB1 . Variants at the 1q21.3 locus do not seem to be associated with human pigmentation or measures of nevus density.
Evolution of chemosensory and detoxification gene families across herbivorous Drosophilidae
Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genomic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families—genes directly mediating interactions with plant chemical defenses—underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many insect lineages are ancient (>150 million years ago (mya)), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several nonherbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza has among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant-binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on living plants (bitter or electrophilic phytotoxins) or their ancestral diet (fermenting plant volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight gene candidates that have also been linked to other dietary transitions in Drosophila.
Hydrogen sulfide inhibits proliferation and release of IL-8 from human airway smooth muscle cells
Hydrogen sulfide (H(2)S) is synthesized intracellularly by the enzymes cystathionine-γ-lyase and cystathionine-β-synthase (CBS), and is proposed to be a gasotransmitter with effects in modulating inflammation and cellular proliferation. We determined a role of H(2)S in airway smooth muscle (ASM) function. ASM were removed from resection or transplant donor lungs and were placed in culture. Proliferation of ASM was induced by FCS and the proinflammatory cytokine, IL-1β. Proliferation of ASM and IL-8 release were measured by bromodeoxyuridine incorporation and ELISA, respectively. Exposure of ASM to H(2)S \"donors\" inhibited this proliferation and IL-8 release. Methemoglobin, a scavenger of endogenous H(2)S, increased DNA synthesis induced by FCS and IL-1β. In addition, methemoglobin increased IL-8 release induced by FCS, but not by IL-1β, indicating a role for endogenous H(2)S in these systems. Inhibition of CBS, but not cystathionine-γ-lyase, reversed the inhibitory effect of H(2)S on proliferation and IL-8 release, indicating that this is dependent on CBS. CBS mRNA and protein expression were inhibited by H(2)S donors, and were increased by methemoglobin, indicating that CBS is the main enzyme responsible for endogenous H(2)S production. Finally, we found that exogenous H(2)S inhibited the phosphorylation of extracellular signal-regulated kinase-1/2 and p38, which could represent a mechanism by which H(2)S inhibited cellular proliferation and IL-8 release. In summary, H(2)S production provides a novel mechanism for regulation of ASM proliferation and IL-8 release. Therefore, regulation of H(2)S may represent a novel approach to controlling ASM proliferation and cytokine release that is found in patients with asthma.