Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Item Type
      Item Type
      Clear All
      Item Type
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Year
      Year
      Clear All
      From:
      -
      To:
1 result(s) for "Widdows, Kate Louise"
Sort by:
Gestational related morphological abnormalities in placental villous trophoblast turnover in compromised pregnancies
Human placental villi are covered by a layer of trophoblast epithelia in direct contact with maternal blood, which exist in a constant steady-state of turnover and renewal ensuring both maternal and fetal health. The process of trophoblast turnover involves proliferation, differentiation and fusion of cytotrophoblast cells to form a terminally differentiated outer syncytiotrophoblast layer which functions as the active transport compartment between mother and fetus. Alterations in the balance between these three processes are thought to diminish both the structural and functional integrity of the syncytiotrophoblast, potentially leading to placental insufficiency associated with severe complications of pregnancy such as pre-eclampsia (PET), intrauterine growth restriction (IUGR) and sudden infant death syndrome (SIDS). Placentas from early (<32 weeks) and late-onset (>33 weeks) pregnancies complicated by PET, IUGR, SIDS and gestational age-matched controls were systematically uniform randomly sampled to assess the morphological basis of placental villous structure and trophoblast turnover (villi, cytotrophoblast, syncytiotrophoblast, apoptotic syncytial knots) using unbiased stereological techniques (volumes and numbers). Villous cytotrophoblast proliferation was assessed using double immunohistochemistry for Ki67 and cytokeratin 7 (CK-7). Severe early-onset IUGR placentas (n=5) were smaller displaying significant reductions in the total number of CT cells, within which the density of proliferating CT was further reduced by 50%. Syncytiotrophoblast volume and number was significantly reduced with an increase in apoptotic syncytial knots. Late-onset IUGR placentas (n=4) also displayed significant reductions in the total number of CT and proliferating CT, but were not associated with changes in the density of proliferating CT. SCT numbers were significantly reduced with an increase in apoptotic knots. Placentas from severe early-onset PET (n=11) were similar to preterm controls, except for a significant increase in apoptotic syncytial knots. However, late-onset PET (n=6) displayed a significant decrease in total CT number, the percentage of which undergoing proliferation was significantly increased for structural villi. There were increased numbers of apoptotic syncytial knots in peripheral villi.