Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
31 result(s) for "Widom, R L"
Sort by:
Cartilage oligomeric matrix protein expression in systemic sclerosis reveals heterogeneity of dermal fibroblast responses to transforming growth factor β
Objective:Cartilage oligomeric matrix protein (COMP) accumulates in systemic sclerosis (SSc) skin and is upregulated by transforming growth factor (TGF)β. To further characterise the response to TGFβ in SSc, we investigated TGFβ1 and COMP expression and myofibroblast staining in SSc skin.Methods:Skin biopsies from patients with diffuse cutaneous SSc (dSSc), limited cutaneous SSc (lSSc) and healthy controls were evaluated for COMP mRNA expression using real-time PCR. COMP, α-smooth muscle actin (SMA) and TGFβ were assessed in skin sections and in cultured fibroblasts by immunohistochemistry. Clinical disease status was assessed by the modified Rodnan skin score (mRSS).Results:Myofibroblasts expressing SMA and COMP were found coexpressed in many cells in dSSc dermis, but each also stained distinct cells in the dermis. Cultured SSc dermal fibroblasts also showed heterogeneity for COMP and SMA expression, with cells expressing SMA, COMP, both or neither. TGFβ treatment increased COMP and SMA-expressing cells. COMP mRNA expression in lesional skin from patients with dSSc correlated with the mRSS and TGFβ1 staining.Conclusion:These findings suggest that TGFβ upregulation of COMP and/or SMA expression in subpopulations of fibroblasts contributes to different pathways of fibrosis and that multiple TGFβ regulated genes may serve as biomarkers for the degree of SSc skin involvement.
Cartilage oligomeric matrix protein expression in systemic sclerosis reveals heterogeneity of dermal fibroblast responses to transforming growth factor beta
Objective: Cartilage oligomeric matrix protein (COMP) accumulates in systemic sclerosis (SSc) skin and is upregulated by transforming growth factor (TGF)β. To further characterise the response to TGFβ in SSc, we investigated TGFβ1 and COMP expression and myofibroblast staining in SSc skin. Methods: Skin biopsies from patients with diffuse cutaneous SSc (dSSc), limited cutaneous SSc (lSSc) and healthy controls were evaluated for COMP mRNA expression using real-time PCR. COMP, α-smooth muscle actin (SMA) and TGFβ were assessed in skin sections and in cultured fibroblasts by immunohistochemistry. Clinical disease status was assessed by the modified Rodnan skin score (mRSS). Results: Myofibroblasts expressing SMA and COMP were found coexpressed in many cells in dSSc dermis, but each also stained distinct cells in the dermis. Cultured SSc dermal fibroblasts also showed heterogeneity for COMP and SMA expression, with cells expressing SMA, COMP, both or neither. TGFβ treatment increased COMP and SMA-expressing cells. COMP mRNA expression in lesional skin from patients with dSSc correlated with the mRSS and TGFβ1 staining. Conclusion: These findings suggest that TGFβ upregulation of COMP and/or SMA expression in subpopulations of fibroblasts contributes to different pathways of fibrosis and that multiple TGFβ regulated genes may serve as biomarkers for the degree of SSc skin involvement.
Pericytes Enrich the Basement Membrane and Reduce Neutrophil Transmigration in an In Vitro Model of Peripheral Inflammation at the Blood–Brain Barrier
Sepsis is the most lethal and expensive condition treated in intensive care units. Sepsis survivors frequently suffer long-term cognitive impairment, which has been linked to the breakdown of the blood–brain barrier (BBB) during a sepsis-associated “cytokine storm”. Because animal models poorly recapitulate sepsis pathophysiology, human models are needed to understand sepsis-associated brain injury and to develop novel therapeutic strategies. With the concurrent emergence of tissue chip technologies and the maturation of protocols for human induced pluripotent stem cell (hiPSC), we can now develop advanced in vitro models of the human BBB and immune system to understand the relationship between systemic inflammation and brain injury. Here, we present a BBB model of the primary barrier developed on the μSiM (microphysiological system enabled by an ultrathin silicon nanomembrane) tissue chip platform. The model features isogenically matched hiPSC-derived extended endothelial culture method brain microvascular endothelial cell-like cells (EECM-BMEC-like cells) and brain pericyte-like cells (BPLCs) in a back-to-back coculture separated by the ultrathin (100 nm) membrane. Both endothelial monocultures and cocultures with pericytes responded to sepsis-like stimuli, with increased small-molecule permeability, although no differences were detected between culture conditions. Conversely, BPLC coculture reduced the number of neutrophils that crossed the EECM-BMEC-like cell monolayer under sepsis-like stimulation. Interestingly, this barrier protection was not seen when the stimulus originated from the tissue side. Our studies are consistent with the reported role for pericytes in regulating leukocyte trafficking during sepsis but indicate that EECM-BMEC-like cells alone are sufficient to maintain the restrictive small-molecule permeability of the BBB.
A physical sciences network characterization of non-tumorigenic and metastatic cells
To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences–Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.
High heritability of ascending aortic diameter and trans-ancestry prediction of thoracic aortic disease
Enlargement of the aorta is an important risk factor for aortic aneurysm and dissection, a leading cause of morbidity in the developed world. Here we performed automated extraction of ascending aortic diameter from cardiac magnetic resonance images of 36,021 individuals from the UK Biobank, followed by genome-wide association. We identified lead variants across 41 loci, including genes related to cardiovascular development ( HAND2 , TBX20 ) and Mendelian forms of thoracic aortic disease ( ELN , FBN1 ). A polygenic score significantly predicted prevalent risk of thoracic aortic aneurysm and the need for surgical intervention for patients with thoracic aneurysm across multiple ancestries within the UK Biobank, FinnGen, the Penn Medicine Biobank and the Million Veterans Program (MVP). Additionally, we highlight the primary causal role of blood pressure in reducing aortic dilation using Mendelian randomization. Overall, our findings provide a roadmap for using genetic determinants of human anatomy to understand cardiovascular development while improving prediction of diseases of the thoracic aorta. Trans-ancestry genome-wide analyses identify multiple loci associated with ascending aortic diameter. A polygenic score constructed from these loci predicted prevalent risk of thoracic aortic aneurysm in independent populations.
GWAS of serum ALT and AST reveals an association of SLC30A10 Thr95Ile with hypermanganesemia symptoms
Understanding mechanisms of hepatocellular damage may lead to new treatments for liver disease, and genome-wide association studies (GWAS) of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum activities have proven useful for investigating liver biology. Here we report 100 loci associating with both enzymes, using GWAS across 411,048 subjects in the UK Biobank. The rare missense variant SLC30A10 Thr95Ile (rs188273166) associates with the largest elevation of both enzymes, and this association replicates in the DiscovEHR study. SLC30A10 excretes manganese from the liver to the bile duct, and rare homozygous loss of function causes the syndrome hypermanganesemia with dystonia-1 (HMNDYT1) which involves cirrhosis. Consistent with hematological symptoms of hypermanganesemia, SLC30A10 Thr95Ile carriers have increased hematocrit and risk of iron deficiency anemia. Carriers also have increased risk of extrahepatic bile duct cancer. These results suggest that genetic variation in SLC30A10 adversely affects more individuals than patients with diagnosed HMNDYT1. Circulating liver enzymes, like alanine aminotransferase (ALT) and aspartate aminotransferase (AST), are highly heritable and predictive of disease. Here, the authors perform a genome-wide association study on ALT and AST, revealing a rare variant in SLC30A10 associated with elevated ALT and AST.
Search formagnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC
The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area similar to 18 m(2), sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb(-1). No magnetic charge exceeding 0.5g(D) (where g(D) is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV <= m <= 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1g(D) <= vertical bar g vertical bar <= 6g(D), and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1g(D) <= vertical bar g vertical bar <= 4g(D). Under the assumption of Drell-Yan cross sections, mass limits are derived for vertical bar g vertical bar = 2g(D) and vertical bar g vertical bar = 3g(D) for the first time at the LHC, surpassing the results from previous collider experiments.
Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A
High plasma levels of soluble P-selectin are associated with thrombotic disorders and may predict future cardiovascular events. Mice with high levels of soluble P-selectin have more microparticles in their plasma than do normal mice. Here we show that chimeras of P-selectin and immunoglobulin (P-sel–Ig) induced formation of procoagulant microparticles in human blood through P-selectin glycoprotein ligand-1 (PSGL-1; encoded by the Psgl1 gene, officially known as Selpl ). In addition, Psgl1 −/− mice produced fewer microparticles after P-sel–Ig infusion and did not spontaneously increase their microparticle count in old age as do wild-type mice. Injected microparticles specifically bound to thrombi and thus could be involved in thrombin generation at sites of injury. Infusion of P-sel–Ig into hemophilia A mice produced a 20-fold increase over control immunoglobulin in microparticles containing tissue factor. This significantly improved the kinetics of fibrin formation in the hemophilia A mice and normalized their tail-bleeding time. P-sel–Ig treatment could become a new approach to sustained control of bleeding in hemophilia.
Risk of lymphoid malignancy associated with cancer predisposition genes
We investigated the prevalence of rare inherited pathogenic variants (PV) in 19 cancer predisposition genes regularly included on multi-gene panel testing based on NCCN guidelines and their association with the risk of lymphoid malignancies (LM) overall and by common lymphoma subtypes and multiple myeloma. The study population included newly diagnosed LM cases ( N  = 6990) and unrelated controls ( N  = 42,632), excluding individuals with a history of hematologic malignancy. Whole exome sequencing was performed on DNA from whole blood. PV were defined as loss-of-function (i.e., nonsense, frameshift, consensus splice sites) or identified as “pathogenic” or “likely pathogenic” in the ClinVar database. A total of 1816 (3.7%) individuals had a PV across the 19 genes, higher in cases (4.7%) than controls (3.5%). In controls, CHEK2 (1.0%), ATM (0.4%), BRCA2 (0.4%), and BRCA1 (0.3%) had the highest prevalence. ATM (odds ratio [OR] = 1.86, 95% confidence interval [CI]: 1.36–2.49), CHEK2 (OR = 1.74, 95% CI: 1.42–2.13) and TP53 (OR = 9.07, 95% CI: 4.51–18.87) were associated with increased risk of LM overall and were further validated in the UK Biobank. We observed heterogeneity in associations by LM subtype. These results demonstrate that several commonly tested cancer predisposition genes are associated with an increased risk of LM.
Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank
[...]exome sequencing-which is focused on the protein-coding regions of the genome-may directly implicate genes in phenotype variability through burden testing of multiple rare protein-coding variants15. [...]analysis of rare coding variation can help establish the directionality of impaired gene function through the analysis of loss-of-function (LOF) alleles, a feature that can be informative both for understanding disease mechanisms and for potential therapeutic targeting. [...]we describe the frequency of mutations in genes underlying cardiovascular diseases and monogenic diabetes. Importantly, the novel associations that we identified remained robust in a LOVO analysis (Supplementary Fig. 10). [...]the genes significantly associated with diseases or traits were identified due to a burden of multiple contributing rare variants, although in certain cases-such as the associations of ANGPTL2 with height and NR1H3 with HDL-single variants were important.