Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Wierzbicki, Dominik"
Sort by:
Co-Precipitated Ni-Mg-Al Hydrotalcite-Derived Catalyst Promoted with Vanadium for CO2 Methanation
Co-precipitated Ni-Mg-Al hydrotalcite-derived catalyst promoted with vanadium were synthesized with different V loadings (0–4 wt%) and studied in CO2 methanation. The promotion with V significantly changes textural properties (specific surface area and mesoporosity) and improves the dispersion of nickel. Moreover, the vanadium promotion strongly influences the surface basicity by increasing the total number of basic sites. An optimal loading of 2 wt% leads to the highest activity in CO2 methanation, which is directly correlated with specific surface area, as well as the basic properties of the studied catalysts.
A general flame aerosol route to kinetically stabilized metal-organic frameworks
Metal-organic frameworks (MOFs) are highly attractive porous materials with applications spanning the fields of chemistry, physics, biology, and engineering. Their exceptional porosity and structural flexibility have led to widespread use in catalysis, separation, biomedicine, and electrochemistry. Currently, most MOFs are synthesized under equilibrium liquid-phase reaction conditions. Here we show a general and versatile non-equilibrium flame aerosol synthesis of MOFs, in which rapid kinetics of MOF formation yields two distinct classes of MOFs, nano-crystalline MOFs and amorphous MOFs. A key advantage of this far-from-equilibrium synthesis is integration of different metal cations within a single MOF phase, even when this is thermodynamically unfavorable. This can, for example, produce single-atom catalysts and bimetallic MOFs of arbitrary metal pairs. Moreover, we demonstrate that dopant metals (e.g., Pt, Pd) can be exsolved from the MOF framework by reduction, forming nanoclusters anchored on the MOF. A prototypical example of such a material exhibited outstanding performance as a CO oxidation catalyst. This general synthesis route opens new opportunities in MOF design and applications across diverse fields and is inherently scalable for continuous production at industrial scales. Metal-organic frameworks (MOFs) are typically synthesized in equilibrium liquid-phase reactions. Here, the authors have developed and present a general non-equilibrium flame aerosol method to produce nanocrystal, amorphous, and bi-metallic MOFs.
Five-analyzer Johann spectrometer for hard X-ray photon-in/photon-out spectroscopy at the Inner Shell Spectroscopy beamline at NSLS-II: design, alignment and data acquisition
Here, a recently commissioned five-analyzer Johann spectrometer at the Inner Shell Spectroscopy beamline (8-ID) at the National Synchrotron Light Source II (NSLS-II) is presented. Designed for hard X-ray photon-in/photon-out spectroscopy, the spectrometer achieves a resolution in the 0.5–2 eV range, depending on the element and/or emission line, providing detailed insights into the local electronic and geometric structure of materials. It serves a diverse user community, including fields such as physical, chemical, biological, environmental and materials sciences. This article details the mechanical design, alignment procedures and data-acquisition scheme of the spectrometer, with a particular focus on the continuous asynchronous data-acquisition approach that significantly enhances experimental efficiency.
A Proposal Concerning Assessment of Alternative Cityscape Designs with Audiovisual Comfort and Health of Inhabitants
The research concerning the future of sound in towns and cities is focused on two main issues: studies are conducted separately on the comfort, i.e., assessment of visual scenery and sound levels in a cityscape and separately, on the health protection issues. The policy of the acoustic environment control with regard to the health of its inhabitants is traditionally connected with measurements of noise levels presented with the help of the coefficients Lden and Lnight noise indicators, while the models based on tranquillity rating (TR) with the help of the coefficients LAmax, LAmin, LAeq, LA10. None of these coefficients refers to the soundscape. In this paper, we present a justification of the necessity to enter into discussion on the need to combine these research areas. The authorities managing towns and cities of the future should be provided with tools enabling them to assess modernisation projects from the point of view of both health and comfort of inhabitants. We present our ideas treating them as an invitation to a scientific discourse, in the form of analysis of actual projects concerning modification of existing cityscapes. The modifications are aimed at returning some unfavourably developed spaces to the inhabitants. When analysing the changes proposed in the projects, we take into account two models of the revitalised area quality assessment. The first model is used to assess the effect of noise on health. The second model, based on the indicator known as the TR, serves simultaneous assessment of an area from both visual and acoustical aspects. The models used contemporarily by scientists show multiple flaws, therefore, for the TR indicator we propose a modification taking the sound structure into account. The modification embodies the idea of masking unpleasant sounds with friendly ones. The changes to the model are presented, in this paper, in the context of two projects which were worked out in the framework of 12th edition of the intercollegiate workshop cycle The New Cityscapes. In the course of each workshop of the cycle, we combined art, science, and technology in order to seek solutions creating a better future. In view of the importance of this issue and the need to introduce a certain level of universalism, the authors offer an invitation to join a discussion on the future of sound in urban agglomerations.
Effects of Graphene Oxide Nanofilm and Chicken Embryo Muscle Extract on Muscle Progenitor Cell Differentiation and Contraction
Finding an effective muscle regeneration technique is a priority for regenerative medicine. It is known that the key factors determining tissue formation include cells, capable of proliferating and/or differentiating, a niche (surface) allowing their colonization and growth factors. The interaction between these factors, especially between the surface of the artificial niche and growth factors, is not entirely clear. Moreover, it seems that the use of a complex of complementary growth factors instead of a few strictly defined ones could increase the effectiveness of tissue maturation, including muscle tissue. In this study, we evaluated whether graphene oxide (GO) nanofilm, chicken embryo muscle extract (CEME), and GO combined with CEME would affect the differentiation and functional maturation of muscle precursor cells, as well as the ability to spontaneously contract a pseudo-tissue muscle. CEME was extracted on day 18 of embryogenesis. Muscle cells obtained from an 8-day-old chicken embryo limb bud were treated with GO and CEME. Cell morphology and differentiation were observed using different microscopy methods. Cytotoxicity and viability of cells were measured by lactate dehydrogenase and Vybrant Cell Proliferation assays. Gene expression of myogenic regulatory genes was measured by Real-Time PCR. Our results demonstrate that CEME, independent of the culture surface, was the main factor influencing the intense differentiation of muscle progenitor cells. The present results, for the first time, clearly demonstrated that the cultured tissue-like structure was capable of inducing contractions without externally applied impulses. It has been indicated that a small amount of CEME in media (about 1%) allows the culture of pseudo-tissue muscle capable of spontaneous contraction. The study showed that the graphene oxide may be used as a niche for differentiating muscle cells, but the decisive influence on the maturation of muscle tissue, especially muscle contractions, depends on the complexity of the applied growth factors.
Graphene Oxide Decreases Pro-Inflammatory Proteins Production in Skeletal Muscle Cells Exposed to SARS-CoV-2 Spike Protein
The experiments aimed to document the presence of the ACE2 receptor on human muscle cells and the effects of the interaction of these cells with the spike protein of the SARS-CoV-2 virus in terms of induction of pro-inflammatory proteins, as well as to assess the possibility of reducing the pool of these proteins with the use of graphene oxide (GO) flakes. Human Skeletal Myoblast (HSkM), purchased from Gibco were maintained in standard condition according to the manufacturer's instruction. The cells were divided into 4 groups; 1. C-control, 2. S-with addition of spike protein, 3. GO-with the addition of graphene oxide, 4. GO-S-with addition of GO followed by the addition of S protein. Protein S (PX-COV-P049) was purchased from ProteoGenix (France). GO was obtained from Advanced Graphene Products (Zielona Gora, Poland). The influence of all the factors on the morphology of cells was investigated using light and confocal microscopy. ACE2 protein expression on muscle cells was visualized and 40 pro-inflammatory cytokines were investigated using the membrane antibody array method. The protein profile of the lysate of cells from individual groups was also analyzed by mass spectrometry. The experiments confirmed the presence of the ACE2 receptor in human skeletal muscle cells. It has also been documented that the SARS-CoV-2 virus spike protein influences the activation of selected pro-inflammatory proteins that promote cytokine storm and oxidative stress in muscle cells. The use of low levels of graphene oxide does not adversely affect muscle cells, reducing the levels of most proteins, including pro-inflammatory proteins. It can be assumed that GO may support anti-inflammatory therapy in muscles by scavenging proteins that activate cytokine storm.
Diamond Nanofilm Normalizes Proliferation and Metabolism in Liver Cancer Cells
Surgical resection of hepatocellular carcinoma can be associated with recurrence resulting from the degeneration of residual volume of the liver. The objective was to assess the possibility of using a biocompatible nanofilm, made of a colloid of diamond nanoparticles (nfND), to fill the side after tumour resection and optimize its contact with proliferating liver cells, minimizing their cancerous transformation. HepG2 and C3A liver cancer cells and HS-5 non-cancer cells were used. An aqueous colloid of diamond nanoparticles, which covered the cell culture plate, was used to create the nanofilm. The roughness of the resulting nanofilm was measured by atomic force microscopy. Mitochondrial activity and cell proliferation were measured by XTT and BrdU assays. Cell morphology and a scratch test were used to evaluate the invasiveness of cells. Flow cytometry determined the number of cells within the cell cycle. Protein expression in was measured by mass spectrometry. The nfND created a surface with increased roughness and exposed oxygen groups compared with a standard plate. All cell lines were prone to settling on the nanofilm, but cancer cells formed more relaxed clusters. The surface compatibility was dependent on the cell type and decreased in the order C3A >HepG2 >HS-5. The invasion was reduced in cancer lines with the greatest effect on the C3A line, reducing proliferation and increasing the G2/M cell population. Among the proteins with altered expression, membrane and nuclear proteins dominated. In vitro studies demonstrated the antiproliferative properties of nfND against C3A liver cancer cells. At the same time, the need to personalize potential therapy was indicated due to the differential protein synthetic responses in C3A vs HepG2 cells. We documented that nfND is a source of signals capable of normalizing the expression of many intracellular proteins involved in the transformation to non-cancerous cells.