Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
29
result(s) for
"Wilborn, Colin D."
Sort by:
ISSN exercise & sports nutrition review update: research & recommendations
2018
Background
Sports nutrition is a constantly evolving field with hundreds of research papers published annually. In the year 2017 alone, 2082 articles were published under the key words ‘sport nutrition’. Consequently, staying current with the relevant literature is often difficult.
Methods
This paper is an ongoing update of the sports nutrition review article originally published as the lead paper to launch the Journal of the International Society of Sports Nutrition in 2004 and updated in 2010. It presents a well-referenced overview of the current state of the science related to optimization of training and performance enhancement through exercise training and nutrition. Notably, due to the accelerated pace and size at which the literature base in this research area grows, the topics discussed will focus on muscle hypertrophy and performance enhancement. As such, this paper provides an overview of: 1.) How ergogenic aids and dietary supplements are defined in terms of governmental regulation and oversight; 2.) How dietary supplements are legally regulated in the United States; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of nutritional approaches to augment skeletal muscle hypertrophy and the potential ergogenic value of various dietary and supplemental approaches.
Conclusions
This updated review is to provide ISSN members and individuals interested in sports nutrition with information that can be implemented in educational, research or practical settings and serve as a foundational basis for determining the efficacy and safety of many common sport nutrition products and their ingredients.
Journal Article
International Society of Sports Nutrition Position Stand: protein and exercise
by
Cribb, Paul J.
,
Wells, Shawn D.
,
Purpura, Martin
in
Amino Acids, Essential - administration & dosage
,
Athletes
,
Athletic Performance
2017
Position statement
The International Society of Sports Nutrition (ISSN) provides an objective and critical review related to the intake of protein for healthy, exercising individuals. Based on the current available literature, the position of the Society is as follows:
An acute exercise stimulus, particularly resistance exercise, and protein ingestion both stimulate muscle protein synthesis (MPS) and are synergistic when protein consumption occurs before or after resistance exercise.
For building muscle mass and for maintaining muscle mass through a positive muscle protein balance, an overall daily protein intake in the range of 1.4–2.0 g protein/kg body weight/day (g/kg/d) is sufficient for most exercising individuals, a value that falls in line within the Acceptable Macronutrient Distribution Range published by the Institute of Medicine for protein.
There is novel evidence that suggests higher protein intakes (>3.0 g/kg/d) may have positive effects on body composition in resistance-trained individuals (i.e., promote loss of fat mass).
Recommendations regarding the optimal protein intake per serving for athletes to maximize MPS are mixed and are dependent upon age and recent resistance exercise stimuli. General recommendations are 0.25 g of a high-quality protein per kg of body weight, or an absolute dose of 20–40 g.
Acute protein doses should strive to contain 700–3000 mg of leucine and/or a higher relative leucine content, in addition to a balanced array of the essential amino acids (EAAs).
These protein doses should ideally be evenly distributed, every 3–4 h, across the day.
The optimal time period during which to ingest protein is likely a matter of individual tolerance, since benefits are derived from pre- or post-workout ingestion; however, the anabolic effect of exercise is long-lasting (at least 24 h), but likely diminishes with increasing time post-exercise.
While it is possible for physically active individuals to obtain their daily protein requirements through the consumption of whole foods, supplementation is a practical way of ensuring intake of adequate protein quality and quantity, while minimizing caloric intake, particularly for athletes who typically complete high volumes of training.
Rapidly digested proteins that contain high proportions of essential amino acids (EAAs) and adequate leucine, are most effective in stimulating MPS.
Different types and quality of protein can affect amino acid bioavailability following protein supplementation.
Athletes should consider focusing on whole food sources of protein that contain all of the EAAs (i.e., it is the EAAs that are required to stimulate MPS).
Endurance athletes should focus on achieving adequate carbohydrate intake to promote optimal performance; the addition of protein may help to offset muscle damage and promote recovery.
Pre-sleep casein protein intake (30–40 g) provides increases in overnight MPS and metabolic rate without influencing lipolysis.
Journal Article
International society of sports nutrition position stand: nutrient timing
by
Wildman, Robert
,
Kerksick, Chad M.
,
Schoenfeld, Brad J.
in
adults
,
appetite
,
Athletic Performance - physiology
2017
Position statement
The International Society of Sports Nutrition (ISSN) provides an objective and critical review regarding the timing of macronutrients in reference to healthy, exercising adults and in particular highly trained individuals on exercise performance and body composition. The following points summarize the position of the ISSN:
Nutrient timing incorporates the use of methodical planning and eating of whole foods, fortified foods and dietary supplements. The timing of energy intake and the ratio of certain ingested macronutrients may enhance recovery and tissue repair, augment muscle protein synthesis (MPS), and improve mood states following high-volume or intense exercise.
Endogenous glycogen stores are maximized by following a high-carbohydrate diet (8–12 g of carbohydrate/kg/day [g/kg/day]); moreover, these stores are depleted most by high volume exercise.
If rapid restoration of glycogen is required (< 4 h of recovery time) then the following strategies should be considered:
aggressive carbohydrate refeeding (1.2 g/kg/h) with a preference towards carbohydrate sources that have a high (> 70) glycemic index
the addition of caffeine (3–8 mg/kg)
combining carbohydrates (0.8 g/kg/h) with protein (0.2–0.4 g/kg/h)
Extended (> 60 min) bouts of high intensity (> 70% VO
2
max) exercise challenge fuel supply and fluid regulation, thus carbohydrate should be consumed at a rate of ~30–60 g of carbohydrate/h in a 6–8% carbohydrate-electrolyte solution (6–12 fluid ounces) every 10–15 min throughout the entire exercise bout, particularly in those exercise bouts that span beyond 70 min. When carbohydrate delivery is inadequate, adding protein may help increase performance, ameliorate muscle damage, promote euglycemia and facilitate glycogen re-synthesis.
Carbohydrate ingestion throughout resistance exercise (e.g., 3–6 sets of 8–12 repetition maximum [RM] using multiple exercises targeting all major muscle groups) has been shown to promote euglycemia and higher glycogen stores. Consuming carbohydrate solely or in combination with protein during resistance exercise increases muscle glycogen stores, ameliorates muscle damage, and facilitates greater acute and chronic training adaptations.
Meeting the total daily intake of protein, preferably with evenly spaced protein feedings (approximately every 3 h during the day), should be viewed as a primary area of emphasis for exercising individuals.
Ingestion of essential amino acids (EAA; approximately 10 g)either in free form or as part of a protein bolus of approximately 20–40 g has been shown to maximally stimulate muscle protein synthesis (MPS).
Pre- and/or post-exercise nutritional interventions (carbohydrate + protein or protein alone) may operate as an effective strategy to support increases in strength and improvements in body composition. However, the size and timing of a pre-exercise meal may impact the extent to which post-exercise protein feeding is required.
Post-exercise ingestion (immediately to 2-h post) of high-quality protein sources stimulates robust increases in MPS.
In non-exercising scenarios, changing the frequency of meals has shown limited impact on weight loss and body composition, with stronger evidence to indicate meal frequency can favorably improve appetite and satiety. More research is needed to determine the influence of combining an exercise program with altered meal frequencies on weight loss and body composition with preliminary research indicating a potential benefit.
Ingesting a 20–40 g protein dose (0.25–0.40 g/kg body mass/dose) of a high-quality source every three to 4 h appears to most favorably affect MPS rates when compared to other dietary patterns and is associated with improved body composition and performance outcomes.
Consuming casein protein (~ 30–40 g) prior to sleep can acutely increase MPS and metabolic rate throughout the night without influencing lipolysis.
Journal Article
International society of sports nutrition position stand: Beta-Alanine
by
Earnest, Conrad P.
,
Kalman, Douglas
,
Trexler, Eric T.
in
adverse effects
,
Amino acids
,
beta-alanine
2015
Position statement
The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4–6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4–6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine.
Journal Article
ISSN exercise & sport nutrition review: research & recommendations
by
Lopez, Hector
,
Almada, Anthony L
,
Wildman, Robert
in
Amino acids
,
athletic performance
,
Clinical Nutrition
2010
Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients.
Journal Article
Safety of dietary supplementation with arginine in adult humans
2018
Previous studies with animals and humans have shown beneficial effects of dietary supplementation with l-arginine (Arg) on reducing white fat and improving health. At present, a long-term safe level of Arg administration to adult humans is unknown. The objective of this study was to conduct a randomized, placebo-controlled, clinical trial to evaluate the safety and tolerability of oral Arg in overweight or obese but otherwise healthy adults with a body mass index of ≥ 25 kg/m2. A total of 142 subjects completed a 7-day wash-in period using a 12 g Arg/day dose. All the remaining eligible 101 subjects who tolerated the wash-in dose (45 men and 56 women) were assigned randomly to ingest 0, 15 or 30 g Arg (as pharmaceutical-grade Arg-HCl) per day for 90 days. Arg was taken daily in at least two divided doses by mixing with a flavored beverage. At Days 0 and 90, blood pressures of study subjects were recorded, their physical examinations were performed, and their blood and 24-h urine samples were obtained to measure: (1) serum concentrations of amino acids, glucose, fatty acids, and related metabolites; and (2) renal, hepatic, endocrine and metabolic parameters. Our results indicate that the serum concentration of Arg in men or women increased (P < 0.05) progressively with increasing oral Arg doses from 0 to 30 g/day. Dietary supplementation with 30 g Arg/day reduced (P < 0.05) systolic blood pressure and serum glucose concentration in females, as well as serum concentrations of free fatty acids in both males and females. Based on physiological and biochemical variables, study subjects tolerated oral administration of 15 and 30 g Arg/day without adverse events. We conclude that a long-term safe level of dietary Arg supplementation is at least 30 g/day in adult humans.
Journal Article
Changes in weight loss, body composition and cardiovascular disease risk after altering macronutrient distributions during a regular exercise program in obese women
by
Harvey, Travis
,
La Bounty, Paul
,
Marcello, Brandon
in
Adult
,
Body Composition - physiology
,
Body Mass Index
2010
Background
This study's purpose investigated the impact of different macronutrient distributions and varying caloric intakes along with regular exercise for metabolic and physiological changes related to weight loss.
Methods
One hundred forty-one sedentary, obese women (38.7 ± 8.0 yrs, 163.3 ± 6.9 cm, 93.2 ± 16.5 kg, 35.0 ± 6.2 kg•m
-2
, 44.8 ± 4.2% fat) were randomized to either no diet + no exercise control group (CON) a no diet + exercise control (ND), or one of four diet + exercise groups (high-energy diet [HED], very low carbohydrate, high protein diet [VLCHP], low carbohydrate, moderate protein diet [LCMP] and high carbohydrate, low protein [HCLP]) in addition to beginning a 3x•week
-1
supervised resistance training program. After 0, 1, 10 and 14 weeks, all participants completed testing sessions which included anthropometric, body composition, energy expenditure, fasting blood samples, aerobic and muscular fitness assessments. Data were analyzed using repeated measures ANOVA with an alpha of 0.05 with LSD post-hoc analysis when appropriate.
Results
All dieting groups exhibited adequate compliance to their prescribed diet regimen as energy and macronutrient amounts and distributions were close to prescribed amounts. Those groups that followed a diet and exercise program reported significantly greater anthropometric (waist circumference and body mass) and body composition via DXA (fat mass and % fat) changes. Caloric restriction initially reduced energy expenditure, but successfully returned to baseline values after 10 weeks of dieting and exercising. Significant fitness improvements (aerobic capacity and maximal strength) occurred in all exercising groups. No significant changes occurred in lipid panel constituents, but serum insulin and HOMA-IR values decreased in the VLCHP group. Significant reductions in serum leptin occurred in all caloric restriction + exercise groups after 14 weeks, which were unchanged in other non-diet/non-exercise groups.
Conclusions
Overall and over the entire test period, all diet groups which restricted their caloric intake and exercised experienced similar responses to each other. Regular exercise and modest caloric restriction successfully promoted anthropometric and body composition improvements along with various markers of muscular fitness. Significant increases in relative energy expenditure and reductions in circulating leptin were found in response to all exercise and diet groups. Macronutrient distribution may impact circulating levels of insulin and overall ability to improve strength levels in obese women who follow regular exercise.
Journal Article
Differential Impact of Calcium and Vitamin D on Body Composition Changes in Post-Menopausal Women Following a Restricted Energy Diet and Exercise Program
by
Wilborn, Colin D.
,
Galbreath, Melyn M.
,
Dove, Jacqueline
in
Adult
,
bioavailability
,
blood lipids
2020
Vitamin D and calcium supplementation have been posited to improve body composition and different formulations of calcium may impact bioavailability. However, data are lacking regarding the combinatorial effects of exercise, diet, and calcium and/or vitamin D supplementation on body composition changes in post-menopausal women. Herein, 128 post-menopausal women (51.3 ± 4.5 years, 36.4 ± 5.7 kg/m2, 46.2 ± 4.5% fat) were assigned to diet and supplement groups while participating in a supervised circuit-style resistance-training program (3 d/week) over a 14-week period. Diet groups included: (1) normal diet (CTL), (2) a low-calorie, higher protein diet (LCHP; 1600 kcal/day, 15% carbohydrates, 55% protein, 30% fat), and (3) a low-calorie, higher carbohydrate diet (LCHC; 1600 kcal/day, 55% carbohydrates, 15% protein, 30% fat). Supplement groups consisted of: (1) maltodextrin (PLA), (2) 800 mg/day of calcium carbonate (Ca), and (3) 800 mg/day of calcium citrate and malate and 400 IU/day of vitamin D (Ca+D). Fasting blood samples, body composition, resting energy expenditure, aerobic capacity, muscular strength and endurance measures were assessed. Data were analyzed by mixed factorial ANOVA with repeated measures and presented as mean change from baseline [95% CI]. Exercise training promoted significant improvements in strength, peak aerobic capacity, and blood lipids. Dieting resulted in greater losses of body mass (CTL −0.4 ± 2.4; LCHC −5.1 ± 4.2; LCHP −3.8 ± 4.2 kg) and fat mass (CTL −1.4 ± 1.8; LCHC −3.7 ± 3.7; LCHP −3.4 ± 3.4 kg). When compared to LCHC-PLA, the LCHC + Ca combination led to greater losses in body mass (PLA −4.1 [−6.1, −2.1], Ca −6.4 [−8.1, −4.7], Ca+D −4.4 [−6.4, −2.5] kg). In comparison to LCHC-Ca, the LCHC-Ca+D led to an improved maintenance of fat-free mass (PLA −0.3 [−1.4, 0.7], Ca −1.4 [−2.3, −0.5], Ca+D 0.4 [−0.6, 1.5] kg) and a greater loss of body fat (PLA −2.3 [−3.4, −1.1], Ca −1.3 [−2.3, −0.3], Ca+D −3.6 [−4.8, −2.5]%). Alternatively, no significant differences in weight loss or body composition resulted when adding Ca or Ca+D to the LCHP regimen in comparison to when PLA was added to the LCHP diet. When combined with an energy-restricted, higher carbohydrate diet, adding 800 mg of Ca carbonate stimulated greater body mass loss compared to when a PLA was added. Alternatively, adding Ca+D to the LCHC diet promoted greater% fat changes and attenuation of fat-free mass loss. Our results expand upon current literature regarding the impact of calcium supplementation with dieting and regular exercise. This data highlights that different forms of calcium in combination with an energy restricted, higher carbohydrate diet may trigger changes in body mass or body composition while no impact of calcium supplementation was observed when participants followed an energy restricted, higher protein diet.
Journal Article
Body composition changes associated with fasted versus non-fasted aerobic exercise
by
Krieger, James W
,
Aragon, Alan Albert
,
Sonmez, Gul T
in
Clinical Nutrition
,
Exercise
,
Medicine
2014
It has been hypothesized that performing aerobic exercise after an overnight fast accelerates the loss of body fat. The purpose of this study was to investigate changes in fat mass and fat-free mass following four weeks of volume-equated fasted versus fed aerobic exercise in young women adhering to a hypocaloric diet. Twenty healthy young female volunteers were randomly assigned to 1 of 2 experimental groups: a fasted training (FASTED) group that performed exercise after an overnight fast (n = 10) or a post-prandial training (FED) group that consumed a meal prior to exercise (n = 10). Training consisted of 1 hour of steady-state aerobic exercise performed 3 days per week. Subjects were provided with customized dietary plans designed to induce a caloric deficit. Nutritional counseling was provided throughout the study period to help ensure dietary adherence and self-reported food intake was monitored on a regular basis. A meal replacement shake was provided either immediately prior to exercise for the FED group or immediately following exercise for the FASTED group, with this nutritional provision carried out under the supervision of a research assistant. Both groups showed a significant loss of weight (P = 0.0005) and fat mass (P = 0.02) from baseline, but no significant between-group differences were noted in any outcome measure. These findings indicate that body composition changes associated with aerobic exercise in conjunction with a hypocaloric diet are similar regardless whether or not an individual is fasted prior to training.
Journal Article
The Effects of Pre- and Post-Exercise Whey vs. Casein Protein Consumption on Body Composition and Performance Measures in Collegiate Female Athletes
by
Hayward, Sara
,
Foster, Cliffa A
,
Outlaw, Jordan
in
Amino acids
,
Bioavailability
,
Body composition
2013
Two of the most popular forms of protein on the market are whey and casein. Both proteins are derived from milk but each protein differs in absorption rate and bioavailability, thus it is possible that each type of protein may contribute differently to the adaptations elicited through resistance training. Therefore, the purpose of this study was to investigate the potential effects of ingestion of two types of protein in conjunction with a controlled resistance training program in collegiate female basketball players. Sixteen NCAA Division III female basketball players were matched according to body mass and randomly assigned in a double-blind manner to consume 24 g whey protein (WP) (N = 8, 20.0 ± 1.9 years, 1.58 ± 0.27 m, 66. 0 ± 4.9 kg, 27.0 ± 4.9 %BF) or 24 g casein protein (CP) (N = 8, 21.0 ± 2.8 years, 1.53 ± 0.29 m, 68.0 ± 2.9 kg, 25.0 ± 5.7 %BF) immediately pre- and post-exercise for eight weeks. Subjects participated in a supervised 4-day per week undulating periodized training program. At 0 and 8 weeks, subjects underwent DXA body composition analysis, and at 0 and 8 weeks underwent one repetition maximum (1RM) strength, muscle endurance, vertical jump, 5-10-5 agility run, and broad jump testing sessions. Data were analyzed using repeated measures ANOVA, and presented as mean ± SD changes from baseline after 60 days. No significant group x time interaction effects were observed among groups in changes in any variable (p > 0.05). A significant time effect was observed for body fat (WP: -2.0 ± 1.1 %BF; CP: -1.0 ± 1.6 %BF, p < 0.001), lean mass (WP: 1.5 ± 1.0 kg; CP: 1. 4 ± 1.0 kg, p < 0.001), fat mass (WP: -1.3 ± 1.2 kg; CP: -0.6 ± 1.4 kg, p < 0.001), leg press 1RM (WP: 88.7 ± 43.9 kg; CP: 90.0 ± 48.5 kg, p < 0.001), bench press 1RM (WP: 7.5 ± 4.6 kg; CP: 4.3 ± 4.5 kg, p = 0.01), vertical jump (WP: 4.1 ± 1.8 cm; CP: 3.5 ± 7.6 cm, p < 0.001), 5-10-5 (WP: -0.3 ± 0.2 sec; CP: -0.09 ± 0.42 sec, p < 0.001), and broad jump (WP: 10.4 ± 6.6 cm; CP: 12. 9 ± 7.1 cm, p < 0.001). The combination of a controlled undulating resistance training program with pre- and post-exercise protein supplementation is capable of inducing significant changes in performance and body composition. There does not appear to be a difference in the performance- enhancing effects between whey and casein proteins. Key pointsFemales can experience and increase in performance makers from consuming protein after resistance training.Females can have a decreased body fat composition when ingesting protein with daily resistance training and conditioning.There was no significant difference in performance markers between whey and casein.
Journal Article