Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
32
result(s) for
"Wiley, Kristen"
Sort by:
The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins
2020
Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of
Naja naja
, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the ‘venom-ome’ and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 ‘venom-ome-specific toxins’ (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery.
Analysis of a near-chromosomal genome assembly and transcriptome profiling of the Indian cobra identifies genes expressed in the venom glands. These data should help develop a new antivenom.
Journal Article
Spitting versus Biting: Differential Venom Gland Contraction Regulates Venom Expenditure in the Black-Necked Spitting Cobra, Naja nigricollis nigricollis
by
Hayes, William K.
,
Harrison, James R.
,
Wiley, Kristen L.
in
Age structure
,
Animal glands
,
Expulsion
2008
According to the venom-metering hypothesis, snakes have the cognitive (decision-making) capacity to control, or meter, how much venom is ejected from the fangs. Critics of venom metering have argued, largely from absence of evidence, that differential venom gland contraction in snakes is trivial or nonexistent. To address this criticism, we videotaped the defensive bites of Naja nigricollis nigricollis during routine venom extractions. Mean duration of venom flow during a single pulse from a fang, when biting (0.35 sec) was significantly longer than that reported previously for spitting (0.066 sec). Moreover, mean mass of venom expended per pulse from a fang during biting (juveniles: 14.2 mg; adults: 188 mg) significantly exceeded that reported for spitting (1.85 mg). During a single bite, both juveniles and adults delivered venom via pulses that were single, multiple (each associated with a jaw contraction), unilateral (from one fang), or bilateral (from both fangs more or less simultaneously). Although juveniles and adults exhibited similar venom flow duration, adults delivered significantly more venom during biting at significantly greater rates of venom flow through the fang. Because venom gland contraction provides the only propulsive force for venom expulsion, our results confirm that N. n. nigricollis meters larger quantities of venom during biting than spitting via differential venom gland contraction. Because of the high degree of functional convergence between venom delivery systems of elapids (including Spitting Cobras) and viperids (the other large family of venomous snakes), the capacity for differential venom gland contraction may be widespread among snakes.
Journal Article
Identification of an allosteric binding site for RORγt inhibition
by
Leysen, Seppe
,
Miller, J. Richard
,
Correll, Craig C.
in
60 APPLIED LIFE SCIENCES
,
631/45/612/388
,
631/57/2272
2015
RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of small-molecule antagonists demonstrates occupancy of a previously unreported allosteric binding pocket. Binding at this non-canonical site induces an unprecedented conformational reorientation of helix 12 in the RORγt LBD, which blocks cofactor binding. The functional consequence of this allosteric ligand-mediated conformation is inhibition of function as evidenced by both biochemical and cellular studies. RORγt function is thus antagonized in a manner molecularly distinct from that of previously described orthosteric RORγt ligands. This brings forward an approach to target RORγt for the treatment of Th17-mediated autoimmune diseases. The elucidation of an unprecedented modality of pharmacological antagonism establishes a mechanism for modulation of nuclear receptors.
Upon the binding of small ligands, nuclear receptors regulate the transcription of genes that are associated with a number of disease mechanisms. Here, the authors report on a novel allosteric ligand binding site on the nuclear receptor RORγt.
Journal Article
Identification of an allosteric binding site for RORgammat inhibition
2015
RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of small-molecule antagonists demonstrates occupancy of a previously unreported allosteric binding pocket. Binding at this non-canonical site induces an unprecedented conformational reorientation of helix 12 in the RORγt LBD, which blocks cofactor binding. The functional consequence of this allosteric ligand-mediated conformation is inhibition of function as evidenced by both biochemical and cellular studies. RORγt function is thus antagonized in a manner molecularly distinct from that of previously described orthosteric RORγt ligands. This brings forward an approach to target RORγt for the treatment of Th17-mediated autoimmune diseases. The elucidation of an unprecedented modality of pharmacological antagonism establishes a mechanism for modulation of nuclear receptors.
Journal Article
Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery
2014
For many intraoperative decisions surgeons depend on frozen section pathology, a technique developed over 150 y ago. Technical innovations that permit rapid molecular characterization of tissue samples at the time of surgery are needed. Here, using desorption electrospray ionization (DESI) MS, we rapidly detect the tumor metabolite 2-hydroxyglutarate (2-HG) from tissue sections of surgically resected gliomas, under ambient conditions and without complex or time-consuming preparation. With DESI MS, we identify isocitrate dehydrogenase 1-mutant tumors with both high sensitivity and specificity within minutes, immediately providing critical diagnostic, prognostic, and predictive information. Imaging tissue sections with DESI MS shows that the 2-HG signal overlaps with areas of tumor and that 2-HG levels correlate with tumor content, thereby indicating tumor margins. Mapping the 2-HG signal onto 3D MRI reconstructions of tumors allows the integration of molecular and radiologic information for enhanced clinical decision making. We also validate the methodology and its deployment in the operating room: We have installed a mass spectrometer in our Advanced Multimodality Image Guided Operating (AMIGO) suite and demonstrate the molecular analysis of surgical tissue during brain surgery. This work indicates that metabolite-imaging MS could transform many aspects of surgical care.
Journal Article
New directions for Alzheimer's disease research from the Jackson Laboratory Center for Alzheimer's and Dementia Research 2022 workshop
2024
INTRODUCTION In September 2022, The Jackson Laboratory Center for Alzheimer's and Dementia Research (JAX CADR) hosted a workshop with leading researchers in the Alzheimer's disease and related dementias (ADRD) field. METHODS During the workshop, the participants brainstormed new directions to overcome current barriers to providing patients with effective ADRD therapeutics. The participants outlined specific areas of focus. Following the workshop, each group used standard literature search methods to provide background for each topic. RESULTS The team of invited experts identified four key areas that can be collectively addressed to make a significant impact in the field: (1) Prioritize the diversification of disease targets, (2) enhance factors promoting resilience, (3) de‐risk clinical pipeline, and (4) centralize data management. DISCUSSION In this report, we review these four objectives and propose innovations to expedite ADRD therapeutic pipelines.
Journal Article
Genome-Wide DNA Methylation Maps in Follicular Lymphoma Cells Determined by Methylation-Enriched Bisulfite Sequencing
2010
Follicular lymphoma (FL) is a form of non-Hodgkin's lymphoma (NHL) that arises from germinal center (GC) B-cells. Despite the significant advances in immunotherapy, FL is still not curable. Beyond transcriptional profiling and genomics datasets, there currently is no epigenome-scale dataset or integrative biology approach that can adequately model this disease and therefore identify novel mechanisms and targets for successful prevention and treatment of FL.
We performed methylation-enriched genome-wide bisulfite sequencing of FL cells and normal CD19(+) B-cells using 454 sequencing technology. The methylated DNA fragments were enriched with methyl-binding proteins, treated with bisulfite, and sequenced using the Roche-454 GS FLX sequencer. The total number of bases covered in the human genome was 18.2 and 49.3 million including 726,003 and 1.3 million CpGs in FL and CD19(+) B-cells, respectively. 11,971 and 7,882 methylated regions of interest (MRIs) were identified respectively. The genome-wide distribution of these MRIs displayed significant differences between FL and normal B-cells. A reverse trend in the distribution of MRIs between the promoter and the gene body was observed in FL and CD19(+) B-cells. The MRIs identified in FL cells also correlated well with transcriptomic data and ChIP-on-Chip analyses of genome-wide histone modifications such as tri-methyl-H3K27, and tri-methyl-H3K4, indicating a concerted epigenetic alteration in FL cells.
This study is the first to provide a large scale and comprehensive analysis of the DNA methylation sequence composition and distribution in the FL epigenome. These integrated approaches have led to the discovery of novel and frequent targets of aberrant epigenetic alterations. The genome-wide bisulfite sequencing approach developed here can be a useful tool for profiling DNA methylation in clinical samples.
Journal Article
A Polymorphism in the P2X7 Gene Increases Susceptibility to Extrapulmonary Tuberculosis
by
Fernando, Suran L
,
Britton, Warwick J
,
Saunders, Bernadette M
in
Adenosine Triphosphate - pharmacology
,
Adult
,
Alleles
2007
Genetic variation influences susceptibility to clinical tuberculosis (TB). Activation of the P2X(7) receptor on human macrophages induces killing of mycobacteria. We have identified polymorphisms in the P2X(7) gene that markedly reduce this killing.
To determine if polymorphisms in P2X7 are associated with increased risk of TB, the prevalence of four polymorphisms was assessed in individuals from Southeast Asia, where the majority of patients with TB in our study originate. The association of these polymorphisms with clinical TB was subsequently investigated in two separate case-control cohorts and the function of P2X(7) was assessed in subjects from one cohort.
Genotyping of P2X7 polymorphisms was performed from subjects in a nested case-control study of a longitudinal refugee cohort and a separate case-control study. The functional capacity of P2X(7) was investigated by measuring ATP-mediated mycobacterial killing and apoptosis.
Only the 1513A-C polymorphism was present in Southeast Asians and the allele was associated with reduced killing of Mycobacterium tuberculosis. The 1513C allele was strongly associated with extrapulmonary, but not pulmonary, TB in the first (odds ratio, 3.8; 95% confidence interval, 1.6-9.0) and second cohorts (odds ratio, 3.7; 95% confidence interval, 1.7-8.0). ATP-mediated killing of mycobacteria was ablated in macrophages from subjects homozygous for the 1513C allele and significantly impaired in macrophages from heterozygous subjects. There was strong correlation between the degree of mycobacterial killing and ATP-induced apoptosis.
The 1513C allele increases susceptibility to extrapulmonary TB, and this defect is associated with the reduction in the capacity of macrophages to kill M. tuberculosis.
Journal Article
Researching COVID to Enhance Recovery (RECOVER) adult study protocol: Rationale, objectives, and design
2023
SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis.
RECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged ≥18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms.
RECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options.
NCT05172024.
Journal Article
Polymorphisms in the P2X7 receptor gene are associated with low lumbar spine bone mineral density and accelerated bone loss in post-menopausal women
by
Hocking, Lynne J
,
Gartland, Alison
,
Stokes, Leanne
in
Apoptosis
,
Biological and medical sciences
,
Bone density
2012
The P2X7 receptor gene (P2RX7) is highly polymorphic with five previously described loss-of-function (LOF) single-nucleotide polymorphisms (SNP; c.151+1G>T, c.946G>A, c.1096C>G, c.1513A>C and c.1729T>A) and one gain-of-function SNP (c.489C>T). The purpose of this study was to determine whether the functional P2RX7 SNPs are associated with lumbar spine (LS) bone mineral density (BMD), a key determinant of vertebral fracture risk, in post-menopausal women. We genotyped 506 post-menopausal women from the Aberdeen Prospective Osteoporosis Screening Study (APOSS) for the above SNPs. Lumbar spine BMD was measured at baseline and at 6-7 year follow-up. P2RX7 genotyping was performed by homogeneous mass extension. We found association of c.946A (p.Arg307Gln) with lower LS-BMD at baseline (P=0.004, β=-0.12) and follow-up (P=0.002, β=-0.13). Further analysis showed that a combined group of subjects who had LOF SNPs (n=48) had nearly ninefold greater annualised percent change in LS-BMD than subjects who were wild type at the six SNP positions (n=84; rate of loss=-0.94%/year and -0.11%/year, respectively, P=0.0005, unpaired t-test). This is the first report that describes association of the c.946A (p.Arg307Gln) LOF SNP with low LS-BMD, and that other LOF SNPs, which result in reduced or no function of the P2X7 receptor, may contribute to accelerated bone loss. Certain polymorphic variants of P2RX7 may identify women at greater risk of developing osteoporosis.
Journal Article