Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Wilking, Helena"
Sort by:
Overeating saturated fat promotes fatty liver and ceramides compared to polyunsaturated fat: a randomized trial
CONTEXT: Saturated fat (SFA) versus polyunsaturated fat (PUFA) may promote non-alcoholic fatty liver disease (NAFLD) by yet unclear mechanisms. OBJECTIVE: To investigate if overeating SFA- and PUFA-enriched diets lead to differential liver fat accumulation in overweight and obese humans. DESIGN: Double-blind randomized trial (LIPOGAIN-2). Overfeeding SFA vs PUFA for 8 weeks, followed by 4 weeks of caloric restriction. SETTING: General community.Participants: n=61 overweight or obese men and women. INTERVENTION: Muffins high in either palm (SFA)- or sunflower oil (PUFA) were added to the habitual diet. MAIN OUTCOME MEASURE: Lean tissue mass (not reported here). Secondary and exploratory outcomes included liver and ectopic fat depots. RESULTS: By design, body weight gain was similar in SFA (2.31±1.38 kg) and PUFA (2.01±1.90 kg) groups, P=0.50. SFA markedly induced liver fat content (50% relative increase) along with liver enzymes and atherogenic serum lipids. In contrast, despite similar weight gain, PUFA did not increase liver fat or liver enzymes or cause any adverse effects on blood lipids. SFA had no differential effect on the accumulation of visceral fat, pancreas fat or total body fat compared with PUFA. SFA consistently increased, while PUFA reduced circulating ceramides; changes that were moderately associated with liver fat changes and proposed markers of hepatic lipogenesis. The adverse metabolic effects of SFA were reversed by calorie restriction. CONCLUSIONS: Saturated fat markedly induces liver fat and serum ceramides whereas dietary polyunsaturated fat prevent liver fat accumulation, reduce ceramides and hyperlipidemia during excess energy intake and weight gain in overweight individuals.
Overeating Saturated Fat Promotes Fatty Liver and Ceramides Compared With Polyunsaturated Fat: A Randomized Trial
Saturated fatty acid (SFA) vs polyunsaturated fatty acid (PUFA) may promote nonalcoholic fatty liver disease by yet unclear mechanisms. To investigate if overeating SFA- and PUFA-enriched diets lead to differential liver fat accumulation in overweight and obese humans. Double-blind randomized trial (LIPOGAIN-2). Overfeeding SFA vs PUFA for 8 weeks, followed by 4 weeks of caloric restriction. General community. Men and women who are overweight or have obesity (n = 61). Muffins, high in either palm (SFA) or sunflower oil (PUFA), were added to the habitual diet. Lean tissue mass (not reported here). Secondary and exploratory outcomes included liver and ectopic fat depots. By design, body weight gain was similar in SFA (2.31 ± 1.38 kg) and PUFA (2.01 ± 1.90 kg) groups, P = 0.50. SFA markedly induced liver fat content (50% relative increase) along with liver enzymes and atherogenic serum lipids. In contrast, despite similar weight gain, PUFA did not increase liver fat or liver enzymes or cause any adverse effects on blood lipids. SFA had no differential effect on the accumulation of visceral fat, pancreas fat, or total body fat compared with PUFA. SFA consistently increased, whereas PUFA reduced circulating ceramides, changes that were moderately associated with liver fat changes and proposed markers of hepatic lipogenesis. The adverse metabolic effects of SFA were reversed by calorie restriction. SFA markedly induces liver fat and serum ceramides, whereas dietary PUFA prevents liver fat accumulation and reduces ceramides and hyperlipidemia during excess energy intake and weight gain in overweight individuals.
Quantification of 11C-PIB kinetics in cardiac amyloidosis
BackgroundThe purpose of this work was to determine the optimal tracer kinetic model of 11C-PIB and to validate the use of the simplified methods retention index (RI) and standardized uptake value (SUV) for quantification of cardiac 11C-PIB uptake in amyloidosis.Methods and resultsSingle-tissue, reversible and irreversible two-tissue models were fitted to data from seven cardiac amyloidosis patients who underwent 11C-PIB PET scans and arterial blood sampling for measurement of blood radioactivity and metabolites. The irreversible two-tissue model (2Tirr) best described cardiac 11C-PIB uptake. RI and SUV showed high correlation with the rate of irreversible binding (Ki) from the 2Tirr model (r2 =0.95 and r2 =0.94). Retrospective data from 10 amyloidosis patients and 5 healthy controls were analyzed using RI, SUV, as well as compartment modelling with a population-average metabolite correction. All measures were higher in amyloidosis patients than in healthy controls (p=.001), but with an overlap between groups for Ki.ConclusionAn irreversible two-tissue model best describes the 11C-PIB uptake in cardiac amyloidosis. RI and SUV correlate well with Ki from the 2Tirr model. RI and SUV discriminate better between amyloidosis patients and controls than Ki based on population-average metabolite correction.
Engaging European society at the forefront of cancer research and care
European cancer research stakeholders met in October 2022 in Heidelberg, Germany, at the 5th Gago conference on European Cancer Policy, to discuss the current cancer research and cancer care policy landscape in Europe. Meeting participants highlighted gaps in the existing European programmes focusing on cancer research, including Europe's Beating Cancer Plan (EBCP), the Mission on Cancer (MoC), Understanding Cancer (UNCAN.eu), and the joint action CRANE, and put forward the next priorities, in the form of the Heidelberg Manifesto for cancer research. This meeting report presents all discussions that shed light on how infrastructures can be effectively shaped for translational, prevention, clinical and outcomes cancer research, with a focus on implementation and sustainability and while engaging patients and the public. In addition, we summarize recommendations on how to introduce frameworks for the digitalization of European cancer research. Finally, we discuss what structures, commitment, and resources are needed to establish a collaborative cancer research environment in Europe to achieve the scale required for innovation. European cancer research stakeholders met in October 2022 at the 5th Gago conference on European Cancer Policy. This meeting report presents all discussions on how infrastructures can be effectively shaped for translational, prevention, clinical and outcomes cancer research, with a focus on implementation and sustainability and while engaging patients and the public.
Engaging European society at the forefront of cancer research and care: How discussions at the 5th Gago Conference on European Science policy led to the Heidelberg Manifesto
European cancer research stakeholders met in October 2022 in Heidelberg, Germany, at the 5th Gago conference on European Cancer Policy, to discuss the current cancer research and cancer care policy landscape in Europe. Meeting participants highlighted gaps in the existing European programmes focusing on cancer research, including Europe's Beating Cancer Plan (EBCP), the Mission on Cancer (MoC), Understanding Cancer (UNCAN.eu), and the joint action CRANE, and put forward the next priorities, in the form of the Heidelberg Manifesto for cancer research. This meeting report presents all discussions that shed light on how infrastructures can be effectively shaped for translational, prevention, clinical and outcomes cancer research, with a focus on implementation and sustainability and while engaging patients and the public. In addition, we summarize recommendations on how to introduce frameworks for the digitalization of European cancer research. Finally, we discuss what structures, commitment, and resources are needed to establish a collaborative cancer research environment in Europe to achieve the scale required for innovation.European cancer research stakeholders met in October 2022 in Heidelberg, Germany, at the 5th Gago conference on European Cancer Policy, to discuss the current cancer research and cancer care policy landscape in Europe. Meeting participants highlighted gaps in the existing European programmes focusing on cancer research, including Europe's Beating Cancer Plan (EBCP), the Mission on Cancer (MoC), Understanding Cancer (UNCAN.eu), and the joint action CRANE, and put forward the next priorities, in the form of the Heidelberg Manifesto for cancer research. This meeting report presents all discussions that shed light on how infrastructures can be effectively shaped for translational, prevention, clinical and outcomes cancer research, with a focus on implementation and sustainability and while engaging patients and the public. In addition, we summarize recommendations on how to introduce frameworks for the digitalization of European cancer research. Finally, we discuss what structures, commitment, and resources are needed to establish a collaborative cancer research environment in Europe to achieve the scale required for innovation.
Engaging European society at the forefront of cancer research and care
European cancer research stakeholders met in October 2022 in Heidelberg, Germany, at the 5 th Gago conference on European Cancer Policy, to discuss the current cancer research and cancer care policy landscape in Europe. Meeting participants highlighted gaps in the existing European programmes focusing on cancer research, including Europe's Beating Cancer Plan (EBCP), the Mission on Cancer (MoC), Understanding Cancer (UNCAN.eu), and the joint action CRANE, and put forward the next priorities, in the form of the Heidelberg Manifesto for cancer research. This meeting report presents all discussions that shed light on how infrastructures can be effectively shaped for translational, prevention, clinical and outcomes cancer research, with a focus on implementation and sustainability and while engaging patients and the public. In addition, we summarize recommendations on how to introduce frameworks for the digitalization of European cancer research. Finally, we discuss what structures, commitment, and resources are needed to establish a collaborative cancer research environment in Europe to achieve the scale required for innovation.