Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
427
result(s) for
"Williams, Gareth J."
Sort by:
Coral reef ecosystem services in the Anthropocene
by
Norström, Albert V.
,
Hicks, Christina C.
,
Williams, Gareth J.
in
Anthropocene
,
co-production
,
Coral reef ecosystems
2019
Coral reefs underpin a range of ecosystem goods and services that contribute to the well‐being of millions of people. However, tropical coral reefs in the Anthropocene are likely to be functionally different from reefs in the past. In this perspective piece, we ask, what does the Anthropocene mean for the provision of ecosystem services from coral reefs? First, we provide examples of the provisioning, regulating, cultural and supporting services underpinned by coral reef ecosystems. We conclude that coral reef ecosystem service research has lagged behind multidisciplinary advances in broader ecosystem services science, such as an explicit recognition that interactions between social and ecological systems underpin ecosystem services. Second, drawing on tools from functional ecology, we outline how these social–ecological relationships can be incorporated into a mechanistic understanding of service provision and how this might be used to anticipate future changes in coral reef ecosystem services. Finally, we explore the emergence of novel reef ecosystem services, for example from tropicalized coastlines, or through changing technological connections to coral reefs. Indeed, when services are conceived as coming from social–ecological system dynamics, novelty in services can emerge from elements of the interactions between people and the ecosystem. This synthesis of the coral reef ecosystem services literature suggests the field is poorly prepared to understand the changing service provision anticipated in the Anthropocene. A new research agenda is needed that better connects reef functional ecology to ecosystem service provision. This research agenda should embrace more holistic approaches to ecosystem service research, recognizing them as co‐produced by ecosystems and society. Importantly, the likelihood of novel ecosystem service configurations requires further conceptualization and empirical assessment. As with current ecosystem services, the loss or gain of services will not affect all people equally and must be understood in the context in which they occur. With the uncertainty surrounding the future of coral reefs in the Anthropocene, research exploring how the benefits to people change will be of great importance. A plain language summary is available for this article. Plain Language Summary
Journal Article
High frequency temperature variability reduces the risk of coral bleaching
by
Safaie, Aryan
,
Barshis, Daniel J.
,
Rogers, Justin S.
in
631/158/2165
,
704/829/2737
,
704/829/826
2018
Coral bleaching is the detrimental expulsion of algal symbionts from their cnidarian hosts, and predominantly occurs when corals are exposed to thermal stress. The incidence and severity of bleaching is often spatially heterogeneous within reef-scales (<1 km), and is therefore not predictable using conventional remote sensing products. Here, we systematically assess the relationship between in situ measurements of 20 environmental variables, along with seven remotely sensed SST thermal stress metrics, and 81 observed bleaching events at coral reef locations spanning five major reef regions globally. We find that high-frequency temperature variability (i.e., daily temperature range) was the most influential factor in predicting bleaching prevalence and had a mitigating effect, such that a 1 °C increase in daily temperature range would reduce the odds of more severe bleaching by a factor of 33. Our findings suggest that reefs with greater high-frequency temperature variability may represent particularly important opportunities to conserve coral ecosystems against the major threat posed by warming ocean temperatures.
Coral bleaching is often predicted via remote sensing of ocean temperatures at large scales, obscuring important reef-scale drivers and biological responses. Here, the authors use in- situ data to show that bleaching is lower globally at reef habitats with greater diurnal temperature variability.
Journal Article
Prey-size plastics are invading larval fish nurseries
by
Manuel, Mark E.
,
Lecky, Joey
,
Kobayashi, Donald R.
in
Animals
,
Aquatic birds
,
Biological Sciences
2019
Life for many of the world’s marine fish begins at the ocean surface. Ocean conditions dictate food availability and govern survivorship, yet little is known about the habitat preferences of larval fish during this highly vulnerable life-history stage. Here we show that surface slicks, a ubiquitous coastal ocean convergence feature, are important nurseries for larval fish from many ocean habitats at ecosystem scales. Slicks had higher densities of marine phytoplankton (1.7-fold), zooplankton (larval fish prey; 3.7-fold), and larval fish (8.1-fold) than nearby ambient waters across our study region in Hawai’i. Slicks contained larger, more well-developed individuals with competent swimming abilities compared to ambient waters, suggesting a physiological benefit to increased prey resources. Slicks also disproportionately accumulated prey-size plastics, resulting in a 60-fold higher ratio of plastics to larval fish prey than nearby waters. Dissections of hundreds of larval fish found that 8.6% of individuals in slicks had ingested plastics, a 2.3-fold higher occurrence than larval fish from ambient waters. Plastics were found in 7 of 8 families dissected, including swordfish (Xiphiidae), a commercially targeted species, and flying fish (Exocoetidae), a principal prey item for tuna and seabirds. Scaling up across an ∼1,000 km² coastal ecosystem in Hawai’i revealed slicks occupied only 8.3% of ocean surface habitat but contained 42.3% of all neustonic larval fish and 91.8% of all floating plastics. The ingestion of plastics by larval fish could reduce survivorship, compounding threats to fisheries productivity posed by overfishing, climate change, and habitat loss.
Journal Article
Near-island biological hotspots in barren ocean basins
by
Friedlander, Alan M.
,
Dillon, Amanda K.
,
Smith, Craig R.
in
704/158/2446/2447
,
704/158/2446/837
,
Agricultural production
2016
Phytoplankton production drives marine ecosystem trophic-structure and global fisheries yields. Phytoplankton biomass is particularly influential near coral reef islands and atolls that span the oligotrophic tropical oceans. The paradoxical enhancement in phytoplankton near an island-reef ecosystem—Island Mass Effect (IME)—was first documented 60 years ago, yet much remains unknown about the prevalence and drivers of this ecologically important phenomenon. Here we provide the first basin-scale investigation of IME. We show that IME is a near-ubiquitous feature among a majority (91%) of coral reef ecosystems surveyed, creating near-island ‘hotspots’ of phytoplankton biomass throughout the upper water column. Variations in IME strength are governed by geomorphic type (atoll vs island), bathymetric slope, reef area and local human impacts (for example, human-derived nutrient input). These ocean oases increase nearshore phytoplankton biomass by up to 86% over oceanic conditions, providing basal energetic resources to higher trophic levels that support subsistence-based human populations.
The Island Mass Effect (IME), where island proximity enhances phytoplankton biomass, remains a poorly understood phenomenon. Here, the authors show the IME is a common feature among Pacific reefs, driving increased production that creates biological hotspots in otherwise barren ocean basins.
Journal Article
Reef Fish Survey Techniques: Assessing the Potential for Standardizing Methodologies
by
Williams, Gareth J.
,
Sandin, Stuart A.
,
Zgliczynski, Brian J.
in
Animals
,
Biodiversity
,
Biology and Life Sciences
2016
Dramatic changes in populations of fishes living on coral reefs have been documented globally and, in response, the research community has initiated efforts to assess and monitor reef fish assemblages. A variety of visual census techniques are employed, however results are often incomparable due to differential methodological performance. Although comparability of data may promote improved assessment of fish populations, and thus management of often critically important nearshore fisheries, to date no standardized and agreed-upon survey method has emerged. This study describes the use of methods across the research community and identifies potential drivers of method selection. An online survey was distributed to researchers from academic, governmental, and non-governmental organizations internationally. Although many methods were identified, 89% of survey-based projects employed one of three methods-belt transect, stationary point count, and some variation of the timed swim method. The selection of survey method was independent of the research design (i.e., assessment goal) and region of study, but was related to the researcher's home institution. While some researchers expressed willingness to modify their current survey protocols to more standardized protocols (76%), their willingness decreased when methodologies were tied to long-term datasets spanning five or more years. Willingness to modify current methodologies was also less common among academic researchers than resource managers. By understanding both the current application of methods and the reported motivations for method selection, we hope to focus discussions towards increasing the comparability of quantitative reef fish survey data.
Journal Article
Emergent patterns of reef fish diversity correlate with coral assemblage shifts along the Great Barrier Reef
by
Ceccarelli, Daniela M.
,
González-Barrios, F. Javier
,
Williams, Gareth J.
in
631/158/2165
,
631/158/851
,
631/158/853
2025
Escalating climate and anthropogenic disturbances draw into question how stable large-scale patterns in biological diversity are in the Anthropocene. Here, we analyse how patterns of reef fish diversity have changed from 1995 to 2022 by examining local diversity and species dissimilarity along a large latitudinal gradient of the Great Barrier Reef and to what extent this correlates with changes in coral cover and coral composition. We find that reef fish species richness followed the expected latitudinal diversity pattern (i.e., greater species richness toward lower latitudes), yet has undergone significant change across space and time. We find declines in species richness at lower latitudes in recent periods but high variability at higher latitudes. Reef fish turnover continuously increased over time at all latitudes and did not show evidence of a return. Altered diversity patterns are characterised by heterogeneous changes in reef fish trophic groups across the latitudinal gradient. Shifts in coral composition correlate more strongly with reef fish diversity changes than fluctuations in coral cover. Our findings provide insight into the extent to which classic macroecological patterns are maintained in the Anthropocene, ultimately questioning whether these patterns are decoupling from their original underlying drivers.
Coral reefs have been severely affected by anthropogenic stress. Using long term data from the Great Barrier Reef, this study found temporal changes in the latitudinal diversity gradient, and stronger correlations between coral assemblage changes and fish diversity than with coral cover fluctuations.
Journal Article
Pathogenesis of a Tissue Loss Disease Affecting Multiple Species of Corals Along the Florida Reef Tract
by
Ushijima, Blake
,
Campbell, Justin E.
,
Jones, Scott
in
acute lesions
,
Amputation
,
antibiotic diagnostics
2019
An outbreak of stony coral tissue loss disease (SCTLD), emerged on reefs off the coast of southeast Florida in 2014 and continues to spread throughout Florida’s Reef Tract. SCTLD is causing extensive mortality of multiple coral species and disease signs vary among affected coral species with differences in rates of tissue loss (acute and subacute), lesion morphology (adjacent bleached zone or not) and lesion occurrence (focal and multi-focal). We examined the virulence, transmission dynamics and response to antibiotic treatment of coral species exhibiting different types of tissue loss lesions from two regions in Florida. M. cavernosa with subacute tissue loss lesions in the southeast Florida region near Fort Lauderdale was compared to corals (multiple species) with acute tissue loss lesions in the Middle Keys. Corals from both regions showed progressive tissue loss but the in situ rate of mortality was significantly higher in tagged colonies in the Keys. Aquaria studies showed disease transmission occurred through direct contact and through the water column for corals from both regions. However, transmission success was higher for corals with acute vs. subacute lesions. There was 100% transmission for both test species, M. cavernosa and M. meandrites, touching acute lesions. Among the three species touching subacute lesions, the disease transmitted readily to O. faveolata (100%) followed by M. cavernosa (30%) with no transmission occurring with P. astreoides. Diseased fragments of all species tested responded to antibiotic treatment with a cessation or slowing of the disease lesions suggesting that bacteria are involved in disease progression. Mortality was higher for in situ corals with acute lesions and transmission was higher in M. canvernosa exposed to acute lesions compared to subacute lesions, suggesting that different microbes may be involved with the two lesion types. However, since in situ mortality of M. cavernosa was not measured in the Middle Keys, we cannot completely rule out that a common pathogen is involved but is less virulent within M. cavernosa.
Journal Article
ATM-Deficient Cancers Provide New Opportunities for Precision Oncology
by
Bose, Pinaki
,
Lees-Miller, Susan P.
,
Kolinsky, Michael
in
Ataxia
,
BRCA1 protein
,
BRCA2 protein
2020
Poly-ADP ribose polymerase (PARP) inhibitors are currently used in the treatment of several cancers carrying mutations in the breast and ovarian cancer susceptibility genes BRCA1 and BRCA2, with many more potential applications under study and in clinical trials. Here, we discuss the potential for extending PARP inhibitor therapies to tumours with deficiencies in the DNA damage-activated protein kinase, Ataxia-Telangiectasia Mutated (ATM). We highlight our recent findings that PARP inhibition alone is cytostatic but not cytotoxic in ATM-deficient cancer cells and that the combination of a PARP inhibitor with an ATR (ATM, Rad3-related) inhibitor is required to induce cell death.
Journal Article
RAD51C-XRCC3 structure and cancer patient mutations define DNA replication roles
by
Tomaszowski, Karl-Heinz
,
Roy, Sunetra
,
Keshvani, Caezanne
in
14/63
,
631/337/1427/2190
,
631/45/607/1159
2023
RAD51C
is an enigmatic predisposition gene for breast, ovarian, and prostate cancer. Currently, missing structural and related functional understanding limits patient mutation interpretation to homology-directed repair (HDR) function analysis. Here we report the RAD51C-XRCC3 (CX3) X-ray co-crystal structure with bound ATP analog and define separable RAD51C replication stability roles informed by its three-dimensional structure, assembly, and unappreciated polymerization motif. Mapping of cancer patient mutations as a functional guide confirms ATP-binding matching RAD51 recombinase, yet highlights distinct CX3 interfaces. Analyses of CRISPR/Cas9-edited human cells with
RAD51C
mutations combined with single-molecule, single-cell and biophysics measurements uncover discrete CX3 regions for DNA replication fork protection, restart and reversal, accomplished by separable functions in DNA binding and implied 5’ RAD51 filament capping. Collective findings establish CX3 as a cancer-relevant replication stress response complex, show how HDR-proficient variants could contribute to tumor development, and identify regions to aid functional testing and classification of cancer mutations.
In this study, the authors present structures and functional analyses for the RAD51C-XRCC3 tumor suppressor complex, providing insights into recurrent mutations in cancer and Fanconi Anemia patients that uncover distinct DNA replication fork protection, restart and reversal regions.
Journal Article
Local human impacts decouple natural biophysical relationships on Pacific coral reefs
by
Gove, Jamison M.
,
Williams, Gareth J.
,
Sandin, Stuart A.
in
anthropogenic activities
,
chlorophyll
,
coral reefs
2015
Human impacts can homogenize and simplify ecosystems, favoring communities that are no longer naturally coupled with (or reflective of) the background environmental regimes in which they are found. Such a process of biophysical decoupling has been explored little in the marine environment due to a lack of replication across the intact-to-degraded ecosystem spectrum. Coral reefs lacking local human impacts provide critical baseline scenarios in which to explore natural biophysical relationships, and provide a template against which to test for their human-induced decoupling. Using 39 Pacific islands, 24 unpopulated (relatively free from local human impacts) and 15 populated (with local human impacts present), spanning 45° of latitude and 65° of longitude, we ask, what are ‘natural’ biophysical relationships on coral reefs and do we see evidence for their human-induced decoupling? Estimates of the percent cover of benthic groups were related to multiple physical environmental drivers (sea surface temperature, irradiance, chlorophyll-a, and wave energy) using mixed-effects models and island mean condition as the unit of replication. Models across unpopulated islands had high explanatory power, identifying key physical environmental drivers of variations in benthic cover in the absence of local human impacts. These same models performed poorly and lost explanatory power when fitted anew to populated (human impacted) islands; biophysical decoupling was clearly evident. Furthermore, key biophysical relationships at populated islands (i.e. those relationships driving benthic variation across space in conjunction with chronic human impact) bore little resemblance to the baseline scenarios identified from unpopulated islands. Our results highlight the ability of local human impacts to decouple biophysical relationships in the marine environment and fundamentally restructure the natural rules of nature.
Journal Article