Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
799
result(s) for
"Williams, Janet E."
Sort by:
Characterization of the Diversity and Temporal Stability of Bacterial Communities in Human Milk
2011
Recent investigations have demonstrated that human milk contains a variety of bacterial genera; however, as of yet very little work has been done to characterize the full diversity of these milk bacterial communities and their relative stability over time. To more thoroughly investigate the human milk microbiome, we utilized microbial identification techniques based on pyrosequencing of the 16S ribosomal RNA gene. Specifically, we characterized the bacterial communities present in milk samples collected from 16 women at three time-points over four weeks. Results indicated that milk bacterial communities were generally complex; several genera represented greater than 5% of the relative community abundance, and the community was often, yet not always, stable over time within an individual. These results support the conclusion that human milk, which is recommended as the optimal nutrition source for almost all healthy infants, contains a collection of bacteria more diverse than previously reported. This finding begs the question as to what role this community plays in colonization of the infant gastrointestinal tract and maintaining mammary health.
Journal Article
Characterization of SARS-CoV-2 RNA, Antibodies, and Neutralizing Capacity in Milk Produced by Women with COVID-19
by
Belfort, Mandy B.
,
Meehan, Courtney L.
,
Fitzgerald, Theresa
in
Adult
,
Antibodies
,
Antibodies, Neutralizing - metabolism
2021
Results from prior studies assaying human milk for the presence of SARS-CoV-2, the causative virus of COVID-19, have suggested milk may act as a potential vehicle for mother-to-child transmission. Most previous studies are limited because they followed only a few participants, were cross-sectional, and/or failed to report how milk was collected and/or analyzed. Whether mother-to-infant SARS-CoV-2 transmission can occur during breastfeeding and, if so, whether the benefits of breastfeeding outweigh this risk during maternal COVID-19 illness remain important questions. Using RT-qPCR, we did not detect SARS-CoV-2 RNA in any milk sample ( n = 37) collected from 18 women following COVID-19 diagnosis. Although we detected evidence of viral RNA on 8 out of 70 breast skin swabs, only one was considered a conclusive positive result. In contrast, 76% of the milk samples collected from women with COVID-19 contained SARS-CoV-2-specific IgA, and 80% had SARS-CoV-2-specific IgG. In addition, 62% of the milk samples were able to neutralize SARS-CoV-2 infectivity in vitro , whereas milk samples collected prior to the COVID-19 pandemic were unable to do so. Taken together, our data do not support mother-to-infant transmission of SARS-CoV-2 via milk. Importantly, milk produced by infected mothers is a beneficial source of anti-SARS-CoV-2 IgA and IgG and neutralizes SARS-CoV-2 activity. These results support recommendations to continue breastfeeding during mild-to-moderate maternal COVID-19 illness. IMPORTANCE Results from prior studies assaying human milk for the presence of SARS-CoV-2, the causative virus of COVID-19, have suggested milk may act as a potential vehicle for mother-to-child transmission. Most previous studies are limited because they followed only a few participants, were cross-sectional, and/or failed to report how milk was collected and/or analyzed. As such, considerable uncertainty remains regarding whether human milk is capable of transmitting SARS-CoV-2 from mother to child. Here, we report that repeated milk samples collected from 18 women following COVID-19 diagnosis did not contain SARS-CoV-2 RNA; however, risk of transmission via breast skin should be further evaluated. Importantly, we found that milk produced by infected mothers is a source of anti-SARS-CoV-2 IgA and IgG and neutralizes SARS-CoV-2 activity. These results support recommendations to continue breastfeeding during mild-to-moderate maternal COVID-19 illness as milk likely provides specific immunologic benefits to infants.
Journal Article
SARS‐CoV‐2 and human milk: What is the evidence?
by
Pace, Ryan M.
,
Meehan, Courtney L.
,
Raiten, Daniel J.
in
Adult
,
Antibodies, Viral - analysis
,
Babies
2020
The novel coronavirus SARS‐CoV‐2 has emerged as one of the most compelling and concerning public health challenges of our time. To address the myriad issues generated by this pandemic, an interdisciplinary breadth of research, clinical and public health communities has rapidly engaged to collectively find answers and solutions. One area of active inquiry is understanding the mode(s) of SARS‐CoV‐2 transmission. Although respiratory droplets are a known mechanism of transmission, other mechanisms are likely. Of particular importance to global health is the possibility of vertical transmission from infected mothers to infants through breastfeeding or consumption of human milk. However, there is limited published literature related to vertical transmission of any human coronaviruses (including SARS‐CoV‐2) via human milk and/or breastfeeding. Results of the literature search reported here (finalized on 17 April 2020) revealed a single study providing some evidence of vertical transmission of human coronavirus 229E; a single study evaluating presence of SARS‐CoV in human milk (it was negative); and no published data on MERS‐CoV and human milk. We identified 13 studies reporting human milk tested for SARS‐CoV‐2; one study (a non‐peer‐reviewed preprint) detected the virus in one milk sample, and another study detected SARS‐CoV‐2 specific IgG in milk. Importantly, none of the studies on coronaviruses and human milk report validation of their collection and analytical methods for use in human milk. These reports are evaluated here, and their implications related to the possibility of vertical transmission of coronaviruses (in particular, SARS‐CoV‐2) during breastfeeding are discussed.
Journal Article
The skin microbiome facilitates adaptive tetrodotoxin production in poisonous newts
by
Vaelli, Patric M
,
Williams, Janet E
,
Eisthen, Heather L
in
Adaptation, Physiological
,
Amino acids
,
amphibian
2020
Rough-skinned newts (Taricha granulosa) use tetrodotoxin (TTX) to block voltage-gated sodium (Nav) channels as a chemical defense against predation. Interestingly, newts exhibit extreme population-level variation in toxicity attributed to a coevolutionary arms race with TTX-resistant predatory snakes, but the source of TTX in newts is unknown. Here, we investigated whether symbiotic bacteria isolated from toxic newts could produce TTX. We characterized the skin-associated microbiota from a toxic and non-toxic population of newts and established pure cultures of isolated bacterial symbionts from toxic newts. We then screened bacterial culture media for TTX using LC-MS/MS and identified TTX-producing bacterial strains from four genera, including Aeromonas, Pseudomonas, Shewanella, and Sphingopyxis. Additionally, we sequenced the Nav channel gene family in toxic newts and found that newts expressed Nav channels with modified TTX binding sites, conferring extreme physiological resistance to TTX. This study highlights the complex interactions among adaptive physiology, animal-bacterial symbiosis, and ecological context. Rough-skinned newts produce tetrodotoxin or TTX, a deadly neurotoxin that is also present in some pufferfish, octopuses, crabs, starfish, flatworms, frogs, and toads. It remains a mystery why so many different creatures produce this toxin. One possibility is that TTX did not evolve in animals at all, but rather it is made by bacteria living on or in these creatures. In fact, scientists have already shown that TTX-producing bacteria supply pufferfish, octopus, and other animals with the toxin. However, it was not known where TTX in newts and other amphibians comes from. TTX kills animals by blocking specialized ion channels and shutting down the signaling between neurons, but rough-skinned newts appear insensitive to this blockage, making it likely that they have evolved defenses against the toxin. Some garter snakes that feed on these newts have also evolved to become immune to the effects of TTX. If bacteria are the source of TTX in the newts, the emergence of newt-eating snakes resistant to TTX must be putting evolutionary pressure on both the newts and the bacteria to boost their anti-snake defenses. Learning more about these complex relationships will help scientists better understand both evolution and the role of beneficial bacteria. Vaelli et al. have now shown that bacteria living on rough-skinned newts produce TTX. In the experiments, bacteria samples were collected from the skin of the newts and grown in the laboratory. Four different types of bacteria from the samples collected produced TTX. Next, Vaelli et al. looked at five genes that encode the channels normally affected by TTX in newts and found that all them have mutations that prevent them from being blocked by this deadly neurotoxin. This suggests that bacteria living on newts shape the evolution of genes critical to the animals’ own survival. Helpful bacteria living on and in animals have important effects on animals’ physiology, health, and disease. But understanding these complex interactions is challenging. Rough-skinned newts provide an excellent model system for studying the effects of helpful bacteria living on animals. Vaelli et al. show that a single chemical produced by bacteria can impact diverse aspects of animal biology including physiology, the evolution of their genes, and their interactions with other creatures in their environment.
Journal Article
Breastfeeding patterns are associated with human milk microbiome composition: The Mother-Infant Microbiomes, Behavior, and Ecology Study (MIMBES)
by
Pace, Ryan M.
,
Meehan, Courtney L.
,
Holdsworth, Elizabeth A.
in
Abundance
,
Achromobacter
,
Analysis
2023
The human milk microbiome (HMM) is hypothesized to be seeded by multiple factors, including the infant oral microbiome during breastfeeding. However, it is not known whether breastfeeding patterns (e.g., frequency or total time) impact the composition of the HMM. As part of the Mother-Infant Microbiomes, Behavior, and Ecology Study (MIMBES), we analyzed data from naturalistic observations of 46 mother-infant dyads living in the US Pacific Northwest and analyzed milk produced by the mothers for its bacterial diversity and composition. DNA was extracted from milk and the V1-V3 region of the 16S rRNA gene was amplified and sequenced. We hypothesized that number of breastfeeding bouts (breastfeeding sessions separated by >30 seconds) and total time breastfeeding would be associated with HMM α-diversity (richness, diversity, or evenness) and differential abundance of HMM bacterial genera. Multiple linear regression was used to examine associations between HMM α-diversity and the number of breastfeeding bouts or total time breastfeeding and selected covariates (infant age, maternal work outside the home, frequency of allomother physical contact with the infant, non-household caregiving network). HMM richness was inversely associated with number of breastfeeding bouts and frequency of allomother physical contact, but not total time breastfeeding. Infants’ non-household caregiving network was positively associated with HMM evenness. In two ANCOM-BC analyses, abundances of 5 of the 35 most abundant genera were differentially associated with frequency of breastfeeding bouts ( Bifidobacterium , Micrococcus , Pedobacter , Acidocella , Achromobacter ); 5 genera ( Bifidobacterium , Agreia , Pedobacter , Rugamonas , Stenotrophomonas ) were associated with total time breastfeeding. These results indicate that breastfeeding patterns and infant caregiving ecology may play a role in influencing HMM composition. Future research is needed to identify whether these relationships are consistent in other populations and if they are associated with variation in the infant’s gastrointestinal (including oral) microbiome.
Journal Article
Pumping and hygiene practices are associated with bacterial load and microbial composition in human milk expressed at home
by
Rasmussen, Kathleen M.
,
Williams, Janet E.
,
McGuire, Mark A.
in
Adult
,
Bacteria
,
Bacteria - genetics
2025
Background
Human milk (HM) harbors a unique microbiome that contributes to the development of the infant gastrointestinal microbiome and influences long-term health outcomes. While pumping and bottle-feeding HM are increasingly common, doing so may introduce exogenous bacteria, altering this microbial community. The extent to which real-world pumping and hygiene practices alter the HM microbial community remains inadequately characterized.
Methods
We conducted a secondary analysis of 104 paired milk samples from 52 healthy women to investigate the associations between at-home pump hygiene practices and the HM microbiota. We compared samples expressed with personal equipment, allowing women to follow their typical practices, noting variations in breast pump types (closed- vs. open-systems), pre-pumping handwashing, and collection kit cleaning practices (OWN). Milk was also expressed with hospital-grade pump with new, commercially sterilized equipment kits under study-controlled conditions (STER) to serve as a control representing each woman’s own unaltered milk microbiota. Microbiota composition was characterized using aerobic culture and 16S rRNA gene sequencing.
Results
Among OWN milk samples, personal breast pump type had little impact on the HM microbiota. Pre-pumping handwashing, practiced by only 22% of participants, was associated with lower bacterial counts. Compared to samples expressed with handwashed kits, those expressed using home-sterilized kits yielded fewer total and gram-negative bacterial counts, and lower relative abundances of
Proteobacteria
. The microbiota of OWN milk samples expressed with home-sterilized kits more closely resembled STER samples even in the absence of pre-pumping handwashing (
R
2
= 0.36;
P
< 0.001).
Conclusions
At-home hygiene practices, particularly collection kit cleaning methods, substantially influence the HM microbiota. Home sterilization of collection kits may minimize changes to the HM microbiota during expression. These findings support evidence-based recommendations for hygienic pumping practices and underscore the need for further research on the health implications (if any) of pumping-dependent variations in the HM microbiota on infant health.
Journal Article
Modeling time-series data from microbial communities
2017
As sequencing technologies have advanced, the amount of information regarding the composition of bacterial communities from various environments (for example, skin or soil) has grown exponentially. To date, most work has focused on cataloging taxa present in samples and determining whether the distribution of taxa shifts with exogenous covariates. However, important questions regarding how taxa interact with each other and their environment remain open thus preventing in-depth ecological understanding of microbiomes. Time-series data from 16S rDNA amplicon sequencing are becoming more common within microbial ecology, but methods to infer ecological interactions from these longitudinal data are limited. We address this gap by presenting a method of analysis using Poisson regression fit with an elastic-net penalty that (1) takes advantage of the fact that the data are time series; (2) constrains estimates to allow for the possibility of many more interactions than data; and (3) is scalable enough to handle data consisting of thousands of taxa. We test the method on gut microbiome data from white-throated woodrats (
Neotoma albigula
) that were fed varying amounts of the plant secondary compound oxalate over a period of 22 days to estimate interactions between OTUs and their environment.
Journal Article
What’s Normal? Immune Profiling of Human Milk from Healthy Women Living in Different Geographical and Socioeconomic Settings
2017
Human milk provides a very wide range of nutrients and bioactive components, including immune factors, human milk oligosaccharides, and a commensal microbiota. These factors are essential for interconnected processes including immunity programming and the development of a normal infant gastrointestinal microbiome. Newborn immune protection mostly relies on maternal immune factors provided through milk. However, studies dealing with an in-depth profiling of the different immune compounds present in human milk and with the assessment of their natural variation in healthy women from different populations are scarce. In this context, the objective of this work was the detection and quantification of a wide array of immune compounds, including innate immunity factors (IL1β, IL6, IL12, INFγ, TNFα), acquired immunity factors (IL2, IL4, IL10, IL13, IL17), chemokines (IL8, Groα, MCP1, MIP1β), growth factors [IL5, IL7, epidermal growth factor (EGF), granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, TGFβ2], and immunoglobulins (IgA, IgG, IgM), in milk produced by healthy women of different ethnicities living in different geographic, dietary, socioeconomic, and environmental settings. Among the analyzed factors, IgA, IgG, IgM, EGF, TGFβ2, IL7, IL8, Groα, and MIP1β were detected in all or most of the samples collected in each population and, therefore, this specific set of compounds might be considered as the \"core\" soluble immune factors in milk produced by healthy women worldwide. This approach may help define which immune factors are (or are not) common in milk produced by women living in various conditions, and to identify host, lifestyle, and environmental factors that affect the immunological composition of this complex biological fluid.
www.ClinicalTrials.gov, identifier NCT02670278.
Journal Article
Immunological composition of human milk before and during subclinical and clinical mastitis
2024
Mastitis, an inflammatory condition affecting more than 25% of breastfeeding women, is usually associated with reduced milk secretion, pain, and discomfort, which often leads to early cessation of breastfeeding. Although the etiology of mastitis is multifactorial, a pro-inflammatory state of the mammary gland might be a risk factor. However, changes in milk composition, and specifically in the milk immune profile, prior to and during mastitis have not been well described. To help close this research gap, we documented the immune profiles of milk produced by both breasts of 10 women experiencing clinical (CM) and 8 women experiencing subclinical (SCM) mastitis during the week of sign/symptom development as well as the week prior and compared them with milk produced by 14 healthy controls. CM was defined as having signs/symptoms of mastitis, whereas SCM was presumed if the participant did not have signs/symptoms of CM, but her milk had a somatic cell count >400,000 cell/mL and/or sodium-to-potassium (Na/K) ratio >1.0. Concentration of 36 immune factors (including immunoglobulins, cytokines, chemokines, and growth factors) was quantified via immunoassays. Milk produced by women who developed CM had distinct immune profiles the week prior to diagnosis, particularly elevated concentrations of pro-inflammatory cytokine IL-1β and regulatory cytokines IL-2, IL-4 and IL-10. In contrast, immune profiles in milk produced by women with SCM did not differ from that produced by healthy women or those with CM the week prior to mastitis onset. Once mastitis appeared, marked changes in milk’s immune profile were observed in both CM and SCM groups. CM was characterized by elevated concentrations of 27 compounds, including pro-inflammatory cytokines (IL-1β, IL-1ra, and TNFα) and chemokines (including IL-8, eotaxin, IP-10, MCP-1, MIP1α, and MIP1β), compared to healthy controls. Milk’s immune profile during SCM was intermediate, showing higher levels of IL-6, IFNγ, and MCP-1 compared to healthy controls, suggesting a milder, more controlled immune response compared to CM. Only milk produced by the mastitis-affected breast had altered immune profiles. Further research is needed to determine if these differences in milk’s immune profiles can be used to improve mastitis risk prediction prior to onset of symptoms.
Journal Article
Multipathogen Analysis of IgA and IgG Antigen Specificity for Selected Pathogens in Milk Produced by Women From Diverse Geographical Regions: The INSPIRE Study
by
Gindola, Debela
,
Otoo, Gloria E.
,
Meehan, Courtney L.
in
Antibodies
,
Antibody Specificity - immunology
,
Antigens
2021
Breastfeeding provides defense against infectious disease during early life. The mechanisms underlying this protection are complex but likely include the vast array of immune cells and components, such as immunoglobulins, in milk. Simply characterizing the concentrations of these bioactives, however, provides only limited information regarding their potential relationships with disease risk in the recipient infant. Rather, understanding pathogen and antigen specificity profiles of milk-borne immunoglobulins might lead to a more complete understanding of how maternal immunity impacts infant health and wellbeing. Milk produced by women living in 11 geographically dispersed populations was applied to a protein microarray containing antigens from 16 pathogens, including diarrheagenic E. coli , Shigella spp. , Salmonella enterica serovar Typhi, Staphylococcus aureus , Streptococcus pneumoniae, Mycobacterium tuberculosis and other pathogens of global health concern, and specific IgA and IgG binding was measured. Our analysis identified novel disease-specific antigen responses and suggests that some IgA and IgG responses vary substantially within and among populations. Patterns of antibody reactivity analyzed by principal component analysis and differential reactivity analysis were associated with either lower-to-middle-income countries (LMICs) or high-income countries (HICs). Antibody levels were generally higher in LMICs than HICs, particularly for Shigella and diarrheagenic E. coli antigens, although sets of S. aureus , S. pneumoniae , and some M. tuberculosis antigens were more reactive in HICs. Differential responses were typically specific to canonical immunodominant antigens, but a set of nondifferential but highly reactive antibodies were specific to antigens possibly universally recognized by antibodies in human milk. This approach provides a promising means to understand how breastfeeding and human milk protect (or do not protect) infants from environmentally relevant pathogens. Furthermore, this approach might lead to interventions to boost population-specific immunity in at-risk breastfeeding mothers and their infants.
Journal Article