Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
85 result(s) for "Willingale, L."
Sort by:
Towards the optimisation of direct laser acceleration
Experimental measurements using the OMEGA EP laser facility demonstrated direct laser acceleration (DLA) of electron beams to (505 ± 75) MeV with (140 ± 30) nC of charge from a low-density plasma target using a 400 J, picosecond duration pulse. Similar trends of electron energy with target density are also observed in self-consistent two-dimensional particle-in-cell simulations. The intensity of the laser pulse is sufficiently large that the electrons are rapidly expelled along the laser pulse propagation axis to form a channel. The dominant acceleration mechanism is confirmed to be DLA and the effect of quasi-static channel fields on energetic electron dynamics is examined. A strong channel magnetic field, self-generated by the accelerated electrons, is found to play a comparable role to the transverse electric channel field in defining the boundary of electron motion.
Strong interplay between superluminosity and radiation friction during direct laser acceleration
Using a test-particle model, we examine direct laser acceleration of electrons within a magnetic filament that has been shown to form inside a laser-irradiated plasma. We focus on ultra-high intensity interactions where the force of radiation friction caused by electron emission of electromagnetic radiation must be taken into account. It is shown that even relatively weak superluminosity of laser wave fronts—the feature that has been previously neglected—qualitatively changes the electron dynamics, leading to a so-called attractor effect. As a result of this effect, electrons with various initial energies reach roughly the same maximum energy and emit roughly the same power in the form of x-rays and gamma-rays. Our analysis implies that the primary cause of the superluminosity is the laser-heated plasma. The discovered strong interplay between superluminosity and radiation friction is of direct relevance to laser-plasma interactions at high-intensity multi-PW laser facilities.
The influence of laser focusing conditions on the direct laser acceleration of electrons
Direct laser acceleration of electrons during a high-energy, picosecond laser interaction with an underdense plasma has been demonstrated to be substantially enhanced by controlling the laser focusing geometry. Experiments using the OMEGA EP facility measured electrons accelerated to maximum energies exceeding 120 times the ponderomotive energy under certain laser focusing, pulse energy, and plasma density conditions. Two-dimensional particle-in-cell simulations show that the laser focusing conditions alter the laser field evolution, channel fields generation, and electron oscillation, all of which contribute to the final electron energies. The optimal laser focusing condition occurs when the transverse oscillation amplitude of the accelerated electron in the channel fields matches the laser beam width, resulting in efficient energy gain. Through this observation, a simple model was developed to calculate the optimal laser focal spot size in more general conditions and is validated by experimental data.
The unexpected role of evolving longitudinal electric fields in generating energetic electrons in relativistically transparent plasmas
Superponderomotive-energy electrons are observed experimentally from the interaction of an intense laser pulse with a relativistically transparent target. For a relativistically transparent target, kinetic modeling shows that the generation of energetic electrons is dominated by energy transfer within the main, classically overdense, plasma volume. The laser pulse produces a narrowing, funnel-like channel inside the plasma volume that generates a field structure responsible for the electron heating. The field structure combines a slowly evolving azimuthal magnetic field, generated by a strong laser-driven longitudinal electron current, and, unexpectedly, a strong propagating longitudinal electric field, generated by reflections off the walls of the funnel-like channel. The magnetic field assists electron heating by the transverse electric field of the laser pulse through deflections, whereas the longitudinal electric field directly accelerates the electrons in the forward direction. The longitudinal electric field produced by reflections is 30 times stronger than that in the incoming laser beam and the resulting direct laser acceleration contributes roughly one third of the energy transferred by the transverse electric field of the laser pulse to electrons of the super-ponderomotive tail.
Observations of pressure anisotropy effects within semi-collisional magnetized plasma bubbles
Magnetized plasma interactions are ubiquitous in astrophysical and laboratory plasmas. Various physical effects have been shown to be important within colliding plasma flows influenced by opposing magnetic fields, however, experimental verification of the mechanisms within the interaction region has remained elusive. Here we discuss a laser-plasma experiment whereby experimental results verify that Biermann battery generated magnetic fields are advected by Nernst flows and anisotropic pressure effects dominate these flows in a reconnection region. These fields are mapped using time-resolved proton probing in multiple directions. Various experimental, modelling and analytical techniques demonstrate the importance of anisotropic pressure in semi-collisional, high- β plasmas, causing a reduction in the magnitude of the reconnecting fields when compared to resistive processes. Anisotropic pressure dynamics are crucial in collisionless plasmas, but are often neglected in collisional plasmas. We show pressure anisotropy to be essential in maintaining the interaction layer, redistributing magnetic fields even for semi-collisional, high energy density physics (HEDP) regimes. Magnetic fields can be reorganized by plasma flows and lead to effects such as magnetic reconnection. Here the authors explore the evolution of magnetized-plasma bubbles in a semi-collisional regime and the role of pressure anisotropy in influencing the flow of the laser-produced plasma.
A new frontier in laboratory physics: magnetized electron–positron plasmas
We describe here efforts to create and study magnetized electron–positron pair plasmas, the existence of which in astrophysical environments is well-established. Laboratory incarnations of such systems are becoming ever more possible due to novel approaches and techniques in plasma, beam and laser physics. Traditional magnetized plasmas studied to date, both in nature and in the laboratory, exhibit a host of different wave types, many of which are generically unstable and evolve into turbulence or violent instabilities. This complexity and the instability of these waves stem to a large degree from the difference in mass between the positively and the negatively charged species: the ions and the electrons. The mass symmetry of pair plasmas, on the other hand, results in unique behaviour, a topic that has been intensively studied theoretically and numerically for decades, but experimental studies are still in the early stages of development. A levitated dipole device is now under construction to study magnetized low-energy, short-Debye-length electron–positron plasmas; this experiment, as well as a stellarator device that is in the planning stage, will be fuelled by a reactor-based positron source and make use of state-of-the-art positron cooling and storage techniques. Relativistic pair plasmas with very different parameters will be created using pair production resulting from intense laser–matter interactions and will be confined in a high-field mirror configuration. We highlight the differences between and similarities among these approaches, and discuss the unique physics insights that can be gained by these studies.
Forward ion acceleration by laser-driven collisionless filamentary shocks in underdense plasmas
We have experimentally investigated the collisionless shock acceleration of ions via the interaction of a relativistic intensity (3 × 1019 W/cm2), 1.053 µm wavelength laser pulse with an underdense plasma. This plasma is formed through the use of a novel cluster jet design that allows for control of the plasma peak density and front scale length without the use of additional plasma-forming laser pulses. When the front density scale length of the target plasma is less than 60 µm, the laser pulse (1 J, 400 fs) is capable of launching an electrostatic shock wave that accelerates a proton beam. This beam is shown to have a narrow divergence angle of 0.8°, a peak flux of 14 × 106 protons/sr with an ion energy exceeding 440 keV. Particle-in-cell simulations indicate this narrow ion beam is produced by converging shocks generated via filamentation of the laser pulse in high-density (near critical) plasma.
Proton beam emittance growth in multipicosecond laser-solid interactions
High intensity laser-solid interactions can accelerate high energy, low emittance proton beams via the target normal sheath acceleration (TNSA) mechanism. Such beams are useful for a number of applications, including time-resolved proton radiography for basic plasma and high energy density physics studies. In experiments using the OMEGA EP laser system, we perform the first measurements of TNSA proton beams generated by up to 100 ps, kilojoule-class laser pulses with relativistic intensities. By systematically varying the laser pulse duration, we measure degradation of the accelerated proton beam quality as the pulse length increases. Two dimensional particle-in-cell simulations and simple scaling arguments suggest that ion motion during the rise time of the longer pulses leads to extended preformed plasma expansion from the rear target surface and strong filamentary field structures which can deflect ions away from uniform trajectories and therefore lead to large emittance growth.
Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures
Laser-wakefield accelerators (LWFAs) are high acceleration-gradient plasma-based particle accelerators capable of producing ultra-relativistic electron beams. Within the strong focusing fields of the wakefield, accelerated electrons undergo betatron oscillations, emitting a bright pulse of X-rays with a micrometer-scale source size that may be used for imaging applications. Non-destructive X-ray phase contrast imaging and tomography of heterogeneous materials can provide insight into their processing, structure, and performance. To demonstrate the imaging capability of X-rays from an LWFA we have examined an irregular eutectic in the aluminum-silicon (Al-Si) system. The lamellar spacing of the Al-Si eutectic microstructure is on the order of a few micrometers, thus requiring high spatial resolution. We present comparisons between the sharpness and spatial resolution in phase contrast images of this eutectic alloy obtained v ia X-ray phase contrast imaging at the Swiss Light Source (SLS) synchrotron and X-ray projection microscopy via an LWFA source. An upper bound on the resolving power of 2.7 ± 0.3  μ m of the LWFA source in this experiment was measured. These results indicate that betatron X-rays from laser wakefield acceleration can provide an alternative to conventional synchrotron sources for high resolution imaging of eutectics and, more broadly, complex microstructures.
Dynamic focusing of laser driven positron jets by self-generated fields
Focusing effect of laser-driven positron jets by self-generated target sheath fields has been observed for the first time experimentally and the results are supported by the computational studies. In the experiment, OMEGA EP short-pulse (0.7 ps, 500 J) irradiates mm-size gold targets with a concave back surface and reference flat-surface targets. Both targets exhibited positrons with quasi-monoenergetic energy peaks while targets with concave curvature also showed increased number of positrons at the detector. The data is consistent with hybrid-PIC simulations confirming that the time-varying electric fields driven by electrons escaping from the target significantly change the trajectories of positrons. These simulations show a small radius of curvature on the rear side increases the relative focusing effect and the positrons to electrons ratio in the escaping plasma. For the smallest radius of curvature, positron jets that are up to 10 times denser can be achieved.