Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
26
result(s) for
"Winger, Katja"
Sort by:
Evaluating Near‐Surface Wind Speeds Simulated by the CRCM6‐GEM5 Model Using AmeriFlux Data Over North America
by
Whittaker, Tim
,
Roberge, Francois
,
Winger, Katja
in
AmeriFlux data
,
Climate change
,
Climate models
2025
We evaluate the performance of various configurations of the Canadian Regional Climate Model (CRCM6‐GEM5) in simulating 10‐m wind speeds using data from 27 AmeriFlux stations across North America. The assessment employs a hierarchy of error metrics, ranging from simple mean bias to advanced metrics that account for the dependence of wind speeds on variables such as friction velocity and stability. The results reveal that (a) the value of roughness length (z0) has a large effect on the simulation of wind speeds, (b) using a lower limit for the Obhukov length instead of a lower limit for the lowest level wind speed seems to deteriorate the simulation of wind speeds under very stable conditions, (c) the choice of stability function has a small but noticeable impact on the wind speeds, (d) the turbulent orographic form drag scheme shows improvement over effective roughness length approach. Plain Language Summary Accurate wind speed forecasting is essential for various applications, from predicting health impacts and wildfire risks to assessing wind energy and storm damage. This study examines how well the Canadian Regional Climate Model (CRCM6‐GEM5) predicts wind speeds at 10 m above the ground, using measurements from 27 AmeriFlux stations. The research examines how different model settings, such as surface roughness and atmospheric stability, affect wind speed predictions. By using a variety of error metrics, the study identifies areas where the model performs well and where improvements are needed, particularly in how it handles stable atmospheric conditions and surface roughness. Key Points Introducing a hierarchy of error metrics significantly alters the conclusions regarding the performance and ranking of the simulations The inclusion of a turbulent orographic form drag scheme notably improves the simulation of near‐surface variables Accurately modeling surface winds under very stable atmospheric conditions remains a primary challenge for most configurations
Journal Article
Atlantic hurricane response to Saharan greening and reduced dust emissions during the mid-Holocene
by
Laprise, René
,
Pausata, Francesco S. R.
,
Emanuel, Kerry
in
African easterly waves
,
Air quality management
,
Airborne remote sensing
2021
We use a high-resolution regional climate model to investigate the changes in Atlantic tropical cyclone (TC) activity during the period of the mid-Holocene (MH: 6000 years BP) with a larger amplitude of the seasonal cycle relative to today. This period was characterized by increased boreal summer insolation over the Northern Hemisphere, a vegetated Sahara and reduced airborne dust concentrations. A set of sensitivity experiments was conducted in which solar insolation, vegetation and dust concentrations were changed in turn to disentangle their impacts on TC activity in the Atlantic Ocean. Results show that the greening of the Sahara and reduced dust loadings (MHGS+RD) lead to a larger increase in the number of Atlantic TCs (27 %) relative to the pre-industrial (PI) climate than the orbital forcing alone (MHPMIP; 9 %). The TC seasonality is also highly modified in the MH climate, showing a decrease in TC activity during the beginning of the hurricane season (June to August), with a shift of its maximum towards October and November in the MHGS+RD experiment relative to PI. MH experiments simulate stronger hurricanes compared to PI, similar to future projections. Moreover, they suggest longer-lasting cyclones relative to PI. Our results also show that changes in the African easterly waves are not relevant in altering the frequency and intensity of TCs, but they may shift the location of their genesis. This work highlights the importance of considering vegetation and dust changes over the Sahara region when investigating TC activity under a different climate state.
Journal Article
Evidence of added value in North American regional climate model hindcast simulations using ever-increasing horizontal resolutions
by
Lucas-Picher, Philippe
,
Winger, Katja
,
Laprise, René
in
Caribbean
,
Channeling
,
Climate models
2017
Commonly termed “added value”, the additional regional details gained by high-resolution regional climate models (RCMs) over the coarser resolution reanalysis driving data are often indistinguishable at the 0.44° grid mesh computationally affordable large CORDEX domains. In an attempt to highlight the benefits of finer resolutions to study the RCM added value, five North American weather phenomena are evaluated in RCM hindcast simulations using grid meshes of 0.44°, 0.22° and 0.11° with available observations. The results show that the orographic precipitation on the west coast of North America is enhanced and more realistic, with two distinct rain bands in the finer resolution simulation. The spatial distribution of precipitation in August and the high frequency of summer precipitation extremes over southwestern United States reveal that the North American monsoon is improved with increasing resolution. Only the finer RCM simulation shows skill at producing snowbelts around the Great Lakes by capturing lake-effect snow. A comparison of wind roses in the St. Lawrence River Valley indicates that only the finer RCM simulation is able to reproduce wind channeling by resolving complex orography. Finally, the simulation of the summer land-sea breezes by the RCM simulations leads to added value in the diurnal cycle of precipitation over the Florida peninsula and the Caribbean islands. Overall, the almost systematic improvements of the finer resolution simulations suggest that higher resolutions, only computationally affordable over smaller domains, might get a higher priority to promote RCM added value.
Journal Article
Paths to Complexity - Centralisation and Urbanisation in Iron Age Europe
by
Wendling, Holger
,
Winger, Katja
,
Fernández-Götz, Manuel
in
Cities and towns, Ancient
,
Cities and towns, Ancient - Europe
,
Complexity (Philosophy)
2014
Exploring the origins of urbanism – the emergence and development of the first cities, has long constituted one of the main challenges of archaeological and ancient historical research. Studying cities in a long-term and cross-cultural perspective links the past with the present, allowing a better understanding of one of the most important developments in human history. Moreover, archaeological research on ancient cities can contribute to a better understanding of contemporary processes of urbanisation. The 21 papers in this volume aim bring together the latest continental and English-speaking research with contributions by well-established researchers and younger colleagues providing innovative perspectives. The whole Iron Age – ca. 800 BC to the beginning of the Common Era – is considered on an international basis to consider such topics as the similarities and differences observed between centralisation and urbanisation processes of the Early and Late Iron Age; new approaches to the internal organisation of settlements and their formation processes; the supply management of central places and economic support from their environment; and the crucial role of sanctuaries in the formation of urban settlements. Contributions cover an area stretching from central Spain to Moravia and from southern France to Britain. The aim has been to produce a work of reference for readers interested in Iron Age archaeology in particular, and in urbanisation processes in general.
Future global meteorological drought hot spots: A study based on CORDEX data
by
Lennard, Christopher J
,
Laprise, René
,
Syktus, Jozef
in
21st century
,
Climate
,
Computer simulation
2020
Two questions motivated this study: 1) Will meteorological droughts become more frequent and severe during the twenty-first century? 2) Given the projected global temperature rise, to what extent does the inclusion of temperature (in addition to precipitation) in drought indicators play a role in future meteorological droughts? To answer, we analyzed the changes in drought frequency, severity, and historically undocumented extreme droughts over 1981–2100, using the standardized precipitation index (SPI; including precipitation only) and standardized precipitation-evapotranspiration index (SPEI; indirectly including temperature), and under two representative concentration pathways (RCP4.5 and RCP8.5). As input data, we employed 103 high-resolution (0.44°) simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), based on a combination of 16 global circulation models (GCMs) and 20 regional circulation models (RCMs). This is the first study on global drought projections including RCMs based on such a large ensemble of RCMs. Based on precipitation only, ∼15% of the global land is likely to experience more frequent and severe droughts during 2071–2100 versus 1981–2010 for both scenarios. This increase is larger (∼47% under RCP4.5, ∼49% under RCP8.5) when precipitation and temperature are used. Both SPI and SPEI project more frequent and severe droughts, especially under RCP8.5, over southern South America, the Mediterranean region, southern Africa, southeastern China, Japan, and southern Australia. A decrease in drought is projected for high latitudes in Northern Hemisphere and Southeast Asia. If temperature is included, drought characteristics are projected to increase over North America, Amazonia, central Europe and Asia, the Horn of Africa, India, and central Australia; if only precipitation is considered, they are found to decrease over those areas.
Journal Article
Climate projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5)
by
Laprise, René
,
Hernández-Díaz, Leticia
,
Šeparović, Leo
in
Africa
,
Atmospheric circulation
,
Boundary conditions
2013
Following the CORDEX experimental protocol, climate simulations and climate-change projections for Africa were made with the new fifth-generation Canadian Regional Climate Model (CRCM5). The model was driven by two Global Climate Models (GCMs), one developed by the
Max
-
Planck
-
Institut für Meteorologie
and the other by the Canadian Centre for Climate Modelling and Analysis, for the period 1950–2100 under the RCP4.5 emission scenario. The performance of the CRCM5 simulations for current climate is discussed first and compared also with a reanalysis-driven CRCM5 simulation. It is shown that errors in lateral boundary conditions and sea-surface temperature from the GCMs have deleterious consequences on the skill of the CRCM5 at reproducing specific regional climate features such as the West African Monsoon and the annual cycle of precipitation. For other aspects of the African climate however the regional model is able to add value compared to the simulations of the driving GCMs. Climate-change projections for periods until the end of this century are also analysed. All models project a warming throughout the twenty-first century, although the details of the climate changes differ notably between model projections, especially for precipitation changes. It is shown that the climate changes projected by CRCM5 often differ noticeably from those of the driving GCMs.
Journal Article
Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model
by
Alexandru, Adelina
,
Laprise, René
,
Šeparović, Leo
in
Atmospheric circulation
,
Bgi / Prodig
,
Boundary conditions
2013
The fifth-generation Canadian Regional Climate Model (CRCM5) was used to dynamically downscale two Coupled Global Climate Model (CGCM) simulations of the transient climate change for the period 1950–2100, over North America, following the CORDEX protocol. The CRCM5 was driven by data from the CanESM2 and MPI-ESM-LR CGCM simulations, based on the historical (1850–2005) and future (2006–2100) RCP4.5 radiative forcing scenario. The results show that the CRCM5 simulations reproduce relatively well the current-climate North American regional climatic features, such as the temperature and precipitation multiannual means, annual cycles and temporal variability at daily scale. A cold bias was noted during the winter season over western and southern portions of the continent. CRCM5-simulated precipitation accumulations at daily temporal scale are much more realistic when compared with its driving CGCM simulations, especially in summer when small-scale driven convective precipitation has a large contribution over land. The CRCM5 climate projections imply a general warming over the continent in the 21st century, especially over the northern regions in winter. The winter warming is mostly contributed by the lower percentiles of daily temperatures, implying a reduction in the frequency and intensity of cold waves. A precipitation decrease is projected over Central America and an increase over the rest of the continent. For the average precipitation change in summer however there is little consensus between the simulations. Some of these differences can be attributed to the uncertainties in CGCM-projected changes in the position and strength of the Pacific Ocean subtropical high pressure.
Journal Article
Climate simulation over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5)
by
Dugas, Bernard
,
Laprise, René
,
Martynov, Andrey
in
Analysis
,
Atmospheric circulation
,
Climate
2013
The new fifth-generation Regional Climate Model (CRCM5) was driven by ERA reanalyses for the period 1984–2008 over the African continent following the CORDEX experimental protocol. Overall the model succeeds in reproducing the main features of the geographical distribution and seasonal cycle of temperature and precipitation, the diurnal cycle of precipitation, and the West African Monsoon (WAM). Biases in surface temperature and precipitation are discussed in relation with some circulation defects noted in the simulation. In the African regions near the equator, the model successfully reproduces the double peak of rainfall due to the double passage of the tropical rainbelt, although it better simulates the magnitude and timing of the second peak of precipitation. CRCM5 captures the timing of the monsoon onset for the Sahel region but underestimates the magnitude of precipitation. The simulated diurnal cycle is quite well simulated for all of the regions, but is always somewhat in advance for the timing of rainfall peak. In boreal summer the CRCM5 simulation exhibits a weak cold bias over the Sahara and the maximum temperature is located too far south, resulting in a southward bias in the position of the Saharan Heat Low. The region of maximum ascent in the deep meridional circulation of the Hadley cell is well located in the CRCM5 simulation, but it is somewhat too narrow. The core of the African Easterly Jet is of the right strength and almost at the right height, but it is displayed slightly southward, as a consequence of the southward bias in the position of the Saharan Heat Low and the thermal wind relationship. These biases appear to be germane to the WAM rainfall band being narrower and not moving far enough northward, resulting in a dry bias in the Sahel.
Journal Article
Effect of empirical correction of sea-surface temperature biases on the CRCM5-simulated climate and projected climate changes over North America
by
Nikiéma, Oumarou
,
Laprise, René
,
Hernández-Díaz, Leticia
in
Archives & records
,
Atmospheric models
,
Boundary conditions
2019
Dynamical downscaling (DD) consists in using archives of Coupled Global Climate Models (CGCM) simulations as the atmospheric and sea-surface boundary conditions (BC) to drive nested, Regional Climate Model (RCM) simulations. Biases in the CGCM-generated driving BC, however, can have detrimental impacts on RCM performance. It is well documented for the historical period that CGCM-simulated sea-surface temperatures (SST) suffer substantial biases, especially important near coastal regions. Assuming that these SST biases are time-invariant, they could in principle be subtracted from century-long CGCM projections before being used to drive RCMs. This paper investigates the performance of a 3-step DD approach as follows. The CGCM-simulated sea-surface temperatures (SST) are first empirically corrected by subtracting their systematic biases; the corrected SST are then used as ocean surface BC for an atmosphere-only GCM (AGCM) simulation; finally this AGCM simulation provides the atmospheric lateral BC to drive an RCM simulation. This is what we refer to as the 3-step approach CGCM–AGCM–RCM of DD, which can be compared to the traditional 2-step approach CGCM–RCM consisting of driving an RCM simulation directly by CGCM-generated BC. In this paper we compare the results obtained with the two approaches, for present and future climates under RCP8.5, using the fifth-generation Canadian Regional Climate Model (CRCM5) with a grid mesh of 0.22° over the North American CORDEX domain, driven by two CMIP5 models: the Canadian Earth System Model of the Canadian Centre for Climate modelling and analysis (CanESM2) and the Earth System Model of the Max-Planck-Institut für Meteorologie (MPI-ESM-MR). The results show that, in current climate, the seasonal-mean 2-m temperature fields simulated with the 3-step DD have generally smaller biases with respect to the observations than those simulated with the 2-step DD; in fact the performance of the 3-step DD simulations often approaches that of the reanalyses-driven simulation. For the seasonal-mean precipitation field, however, the differences between the two DD methods are not conclusive. Differences between the projected climate changes with the two DD methods vary substantially depending upon the variable being considered. Differences are particularly important for temperature: over the bulk of the North American continent, the 3-step DD projects more warming in winter and less in summer. This result highlights the nonlinearities of the climate system, and constitutes an additional measure of uncertainty with DD.
Journal Article
3-Step dynamical downscaling with empirical correction of sea-surface conditions: application to a CORDEX Africa simulation
by
Nikiéma, Oumarou
,
Laprise, René
,
Hernández-Díaz, Leticia
in
Analysis
,
Boundary conditions
,
climate
2017
Dynamical downscaling of climate projections over a limited-area domain using a Regional Climate Model (RCM) requires boundary conditions (BC) from a Coupled Global Climate Model (CGCM) simulation. Biases in CGCM-generated BC can have detrimental effects in RCM simulations, so attempts to improve the BC used to drive the RCM simulations are worth exploring. It is in this context that an empirical method involving the bias correction of the sea-surface conditions (SSCs; sea-surface temperature and sea-ice concentration) simulated by a CGCM has been developed: The 3-step dynamical downscaling approach. The SSCs from a CGCM simulation are empirically corrected and used as lower BC over the ocean for an atmosphere-only global climate model (AGCM) simulation, which in turn provides the atmospheric lateral BC to drive the RCM simulation. We analyse the impact of this strategy on the simulation of the African climate, with a special attention to the West African Monsoon (WAM) precipitation, using the fifth-generation Canadian Regional Climate Model (CRCM5) over the CORDEX-Africa domain. The Earth System Model of the
Max
-
Planck
-
Institut für Meteorologie
(MPI-ESM-LR) is used as CGCM and a global version of CRCM5 is used as AGCM. The results indicate that the historical climate is much improved, approaching the skill of reanalysis-driven hindcast simulations. The most remarkable effect of this approach is the positive impact on the simulation of all aspects of the WAM precipitation, mainly due to the correction of SSCs. In fact, our results show that proper sea surface temperature (SST) in the Gulf of Guinea is a necessary condition for an adequate simulation of WAM precipitation, especially over the equatorial region of West Africa. It was found that the climate-change projections under RCP4.5 scenario obtained with the 3-step approach are substantially different from those obtained with usual downscaling approach in which the RCM is directly driven by the CGCM output; in the WAM region most of the differences in the projected climate changes came mainly from the empirical correction of SST.
Journal Article