Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
29 result(s) for "Winterkorn, Lara"
Sort by:
Developmental Dynamics of X-Chromosome Dosage Compensation by the DCC and H4K20me1 in C. elegans
In Caenorhabditis elegans, the dosage compensation complex (DCC) specifically binds to and represses transcription from both X chromosomes in hermaphrodites. The DCC is composed of an X-specific condensin complex that interacts with several proteins. During embryogenesis, DCC starts localizing to the X chromosomes around the 40-cell stage, and is followed by X-enrichment of H4K20me1 between 100-cell to comma stage. Here, we analyzed dosage compensation of the X chromosome between sexes, and the roles of dpy-27 (condensin subunit), dpy-21 (non-condensin DCC member), set-1 (H4K20 monomethylase) and set-4 (H4K20 di-/tri-methylase) in X chromosome repression using mRNA-seq and ChIP-seq analyses across several developmental time points. We found that the DCC starts repressing the X chromosomes by the 40-cell stage, but X-linked transcript levels remain significantly higher in hermaphrodites compared to males through the comma stage of embryogenesis. Dpy-27 and dpy-21 are required for X chromosome repression throughout development, but particularly in early embryos dpy-27 and dpy-21 mutations produced distinct expression changes, suggesting a DCC independent role for dpy-21. We previously hypothesized that the DCC increases H4K20me1 by reducing set-4 activity on the X chromosomes. Accordingly, in the set-4 mutant, H4K20me1 increased more from the autosomes compared to the X, equalizing H4K20me1 level between X and autosomes. H4K20me1 increase on the autosomes led to a slight repression, resulting in a relative effect of X derepression. H4K20me1 depletion in the set-1 mutant showed greater X derepression compared to equalization of H4K20me1 levels between X and autosomes in the set-4 mutant, indicating that H4K20me1 level is important, but X to autosomal balance of H4K20me1 contributes slightly to X-repression. Thus H4K20me1 is not only a downstream effector of the DCC [corrected].In summary, X chromosome dosage compensation starts in early embryos as the DCC localizes to the X, and is strengthened in later embryogenesis by H4K20me1.
Condensin DC loads and spreads from recruitment sites to create loop-anchored TADs in C. elegans
Condensins are molecular motors that compact DNA via linear translocation. In Caenorhabditis elegans , the X-chromosome harbors a specialized condensin that participates in dosage compensation (DC). Condensin DC is recruited to and spreads from a small number of r ecruitment e lements on the X -chromosome ( rex ) and is required for the formation of topologically associating domains (TADs). We take advantage of autosomes that are largely devoid of condensin DC and TADs to address how rex sites and condensin DC give rise to the formation of TADs. When an autosome and X-chromosome are physically fused, despite the spreading of condensin DC into the autosome, no TAD was created. Insertion of a strong rex on the X-chromosome results in the TAD boundary formation regardless of sequence orientation. When the same rex is inserted on an autosome, despite condensin DC recruitment, there was no spreading or features of a TAD. On the other hand, when a ‘ super rex ’ composed of six rex sites or three separate rex sites are inserted on an autosome, recruitment and spreading of condensin DC led to the formation of TADs. Therefore, recruitment to and spreading from rex sites are necessary and sufficient for recapitulating loop-anchored TADs observed on the X-chromosome. Together our data suggest a model in which rex sites are both loading sites and bidirectional barriers for condensin DC, a one-sided loop-extruder with movable inactive anchor.
Recent ultra-rare inherited variants implicate new autism candidate risk genes
Autism is a highly heritable complex disorder in which de novo mutation (DNM) variation contributes significantly to risk. Using whole-genome sequencing data from 3,474 families, we investigate another source of large-effect risk variation, ultra-rare variants. We report and replicate a transmission disequilibrium of private, likely gene-disruptive (LGD) variants in probands but find that 95% of this burden resides outside of known DNM-enriched genes. This variant class more strongly affects multiplex family probands and supports a multi-hit model for autism. Candidate genes with private LGD variants preferentially transmitted to probands converge on the E3 ubiquitin–protein ligase complex, intracellular transport and Erb signaling protein networks. We estimate that these variants are approximately 2.5 generations old and significantly younger than other variants of similar type and frequency in siblings. Overall, private LGD variants are under strong purifying selection and appear to act on a distinct set of genes not yet associated with autism. Analysis of whole-genome sequence data from 3,474 families finds an excess of private, likely gene-disrupting variants in individuals with autism. These variants are under purifying selection and suggest candidate genes not previously associated with autism.
Cooperation between a hierarchical set of recruitment sites targets the X chromosome for dosage compensation
In many organisms, it remains unclear how X chromosomes are specified for dosage compensation, since DNA sequence motifs shown to be important for dosage compensation complex (DCC) recruitment are themselves not X-specific. Here, we addressed this problem in C. elegans. We found that the DCC recruiter, SDC-2, is required to maintain open chromatin at a small number of primary DCC recruitment sites, whose sequence and genomic context are X-specific. Along the X, primary recruitment sites are interspersed with secondary sites, whose function is X-dependent. A secondary site can ectopically recruit the DCC when additional recruitment sites are inserted either in tandem or at a distance (>30 kb). Deletion of a recruitment site on the X results in reduced DCC binding across several megabases surrounded by topologically associating domain (TAD) boundaries. Our work elucidates that hierarchy and long-distance cooperativity between gene-regulatory elements target a single chromosome for regulation. The DNA inside living cells is organized in structures called chromosomes. In many animals, females have two X chromosomes, whereas males have only one. To ensure that females do not end up with a double dose of the proteins encoded by the genes on the X chromosome, animals use a process called dosage compensation to correct this imbalance. The mechanisms underlying this process vary between species, but they typically involve a regulatory complex that binds to the X chromosomes of one sex to modify gene expression. Caenorhabditis elegans, for example, is a species of nematode worm in which individuals with two X chromosomes are hermaphrodites and those with one X chromosome are males. In C. elegans, a regulatory complex, called the dosage compensation complex, attaches to both X chromosomes of a hermaphrodite, and reduces the expression of the genes on each by half to match the level seen in the males. Previous research has shown that short DNA sequences, known as motifs, recruit the dosage compensation complex to the X chromosomes. However, these sequences are also found on the other chromosomes and, until now, it was not known why the complex was only recruited to the X chromosomes. Albritton et al. now show the X chromosomes have a ‘hierarchical’ recruitment system. A few sites on the X chromosomes contain clusters of a specific DNA motif, which initiate the process and attract the dosage compensation complex more strongly than other sites. These ‘strong’ recruitment sites are placed across the length of the X chromosomes and cooperate with several ‘weaker’ ones located in between. This way, multiple recruitment sites can cooperate over a long distance, while non-sex chromosomes, which have only one or two stronger recruitment sites, do not have thisadvantage. Hierarchy and cooperativity may be general features of gene expression, in which proteins are targeted to chromosomes without the need for having specific motifs at every recruitment site. The way DNA sequences are distributed across the genome may give us clues about their role. Thus, knowing how genomes are structured will help us identify disrupted areas in diseases such as cancer.
Rates of contributory de novo mutation in high and low-risk autism families
Autism arises in high and low-risk families. De novo mutation contributes to autism incidence in low-risk families as there is a higher incidence in the affected of the simplex families than in their unaffected siblings. But the extent of contribution in low-risk families cannot be determined solely from simplex families as they are a mixture of low and high-risk. The rate of de novo mutation in nearly pure populations of high-risk families, the multiplex families, has not previously been rigorously determined. Moreover, rates of de novo mutation have been underestimated from studies based on low resolution microarrays and whole exome sequencing. Here we report on findings from whole genome sequence (WGS) of both simplex families from the Simons Simplex Collection (SSC) and multiplex families from the Autism Genetic Resource Exchange (AGRE). After removing the multiplex samples with excessive cell-line genetic drift, we find that the contribution of de novo mutation in multiplex is significantly smaller than the contribution in simplex. We use WGS to provide high resolution CNV profiles and to analyze more than coding regions, and revise upward the rate in simplex autism due to an excess of de novo events targeting introns. Based on this study, we now estimate that de novo events contribute to 52–67% of cases of autism arising from low risk families, and 30–39% of cases of all autism.Yoon, Munoz, et al. investigate the rate of de novo coding and non-coding variants in families with high- and low-risk for autism using whole-genome sequence data from collections of families with autism. They demonstrate that de novo intronic variants increase the risk of autism, that the contribution of de novo variants is significantly larger in low-risk families, and that de novo variants contribute to 30-39% of cases of all autism.
Evolution of structural rearrangements in prostate cancer intracranial metastases
Intracranial metastases in prostate cancer are uncommon but clinically aggressive. A detailed molecular characterization of prostate cancer intracranial metastases would improve our understanding of their pathogenesis and the search for new treatment strategies. We evaluated the clinical and molecular characteristics of 36 patients with metastatic prostate cancer to either the dura or brain parenchyma. We performed whole genome sequencing (WGS) of 10 intracranial prostate cancer metastases, as well as WGS of primary prostate tumors from men who later developed metastatic disease ( n  = 6) and nonbrain prostate cancer metastases ( n  = 36). This first study focused on WGS of prostate intracranial metastases led to several new insights. First, there was a higher diversity of complex structural alterations in prostate cancer intracranial metastases compared to primary tumor tissues. Chromothripsis and chromoplexy events seemed to dominate, yet there were few enrichments of specific categories of structural variants compared with non-brain metastases. Second, aberrations involving the AR gene, including AR enhancer gain were observed in 7/10 (70%) of intracranial metastases, as well as recurrent loss of function aberrations involving TP53 in 8/10 (80%), RB1 in 2/10 (20%), BRCA2 in 2/10 (20%), and activation of the PI3K/AKT/PTEN pathway in 8/10 (80%). These alterations were frequently present in tumor tissues from other sites of disease obtained concurrently or sequentially from the same individuals. Third, clonality analysis points to genomic factors and evolutionary bottlenecks that contribute to metastatic spread in patients with prostate cancer. These results describe the aggressive molecular features underlying intracranial metastasis that may inform future diagnostic and treatment approaches.
A complex phylogeny of lineage plasticity in metastatic castration resistant prostate cancer
Aggressive variant and androgen receptor (AR)-independent castration resistant prostate cancers (CRPC) represent the most significant diagnostic and therapeutic challenges in prostate cancer. This study examined a case of simultaneous progression of both adenocarcinoma and squamous tumors from the same common origin. Using whole-genome and transcriptome sequencing from 17 samples collected over >6 years, we established the clonal relationship of all samples, defined shared complex structural variants, and demonstrated both divergent and convergent evolution at AR . Squamous CRPC-associated circulating tumor DNA was identified at clinical progression prior to biopsy detection of any squamous differentiation. Dynamic changes in the detection rate of histology-specific clones in circulation reflected histology-specific sensitivity to treatment. This dataset serves as an illustration of non-neuroendocrine transdifferentiation and highlights the importance of serial sampling at progression in CRPC for the detection of emergent non-adenocarcinoma histologies with implications for the treatment of lineage plasticity and transdifferentiation in metastatic CRPC.
Mapping and characterization of structural variation in 17,795 human genomes
A key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline 1 to map and characterize structural variants in 17,795 deeply sequenced human genomes. We publicly release site-frequency data to create the largest, to our knowledge, whole-genome-sequencing-based structural variant resource so far. On average, individuals carry 2.9 rare structural variants that alter coding regions; these variants affect the dosage or structure of 4.2 genes and account for 4.0–11.2% of rare high-impact coding alleles. Using a computational model, we estimate that structural variants account for 17.2% of rare alleles genome-wide, with predicted deleterious effects that are equivalent to loss-of-function coding alleles; approximately 90% of such structural variants are noncoding deletions (mean 19.1 per genome). We report 158,991 ultra-rare structural variants and show that 2% of individuals carry ultra-rare megabase-scale structural variants, nearly half of which are balanced or complex rearrangements. Finally, we infer the dosage sensitivity of genes and noncoding elements, and reveal trends that relate to element class and conservation. This work will help to guide the analysis and interpretation of structural variants in the era of whole-genome sequencing. Structural variants in more than 17,000 human genomes are mapped and characterized using whole-genome sequencing, showing how this type of variation contributes to rare deleterious coding and noncoding alleles.