Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
979
result(s) for
"Winters, D"
Sort by:
Calving as a Source of Acute and Persistent Kinetic Energy to Enhance Submarine Melting of Tidewater Glaciers
2025
Calving icebergs at tidewater glaciers release large amounts of potential energy. This energy—in principle—could be a source for submarine melting, which scales with near‐terminus water temperature and velocity. Because near‐terminus currents are challenging to observe or predict, submarine melt remains a key uncertainty in projecting tidewater glacier retreat and sea level rise. Here, we study one submarine calving event at Xeitl Sít’ (LeConte Glacier), Alaska, to explore the effect of calving on ice melt, using a suite of autonomously deployed instruments beneath, around, and downstream of the calving iceberg. Our measurements captured flows exceeding 5 m/s and demonstrate how potential energy converts to kinetic energy EK $\\left({E}_{K}\\right)$. While most energy decays quickly (through turbulence, mixing, and radiated waves), near‐terminus EK ${E}_{K}$ remains elevated, nearly doubling predicted melt rates for hours after the event. Calving‐induced currents could thus be an important overlooked energy source for submarine melt and glacier retreat.
Journal Article
Does the endometrial cavity have a molecular microbial signature?
2019
Recent molecular studies concluded that the endometrium has a resident microbiota dominated by
Lactobacillus
spp. and is therefore similar to that of the vagina. These findings were largely derived from endometrial samples obtained through a transcervical catheter and thus prone to contamination. Herein, we investigated the molecular microbial profiles of mid-endometrial samples obtained through hysterectomy and compared them with those of the cervix, vagina, rectum, oral cavity, and controls for background DNA contamination. Microbial profiles were examined through 16S rRNA gene qPCR and sequencing. Universal bacterial qPCR of total 16S rDNA revealed a bacterial load exceeding that of background DNA controls in the endometrium of 60% (15/25) of the study subjects. Bacterial profiles of the endometrium differed from those of the oral cavity, rectum, vagina, and background DNA controls, but not of the cervix. The bacterial profiles of the endometrium and cervix were dominated by
Acinetobacter
,
Pseudomonas
,
Cloacibacterium
, and Comamonadaceae. Both 16S rRNA gene sequencing and
Lactobacillus
species-specific (
L
.
iners
&
L crispatus
) qPCR showed that
Lactobacillus
was rare in the endometrium. In conclusion, if there is a microbiota in the middle endometrium, it is not dominated by
Lactobacillus
as was previously concluded, yet further investigation using culture and microscopy is necessary.
Journal Article
Dynamic remodeling of a basolateral-to-central amygdala glutamatergic circuit across fear states
2019
Acquisition and extinction of learned fear responses utilize conserved but flexible neural circuits. Here we show that acquisition of conditioned freezing behavior is associated with dynamic remodeling of relative excitatory drive from the basolateral amygdala (BLA) away from corticotropin releasing factor-expressing (CRF+) centrolateral amygdala neurons, and toward non-CRF+ (CRF−) and somatostatin-expressing (SOM+) neurons, while fear extinction training remodels this circuit back toward favoring CRF+ neurons. Importantly, BLA activity is required for this experience-dependent remodeling, while directed inhibition of the BLA–centrolateral amygdala circuit impairs both fear memory acquisition and extinction memory retrieval. Additionally, ectopic excitation of CRF+ neurons impairs fear memory acquisition and facilities extinction, whereas CRF+ neuron inhibition impairs extinction memory retrieval, supporting the notion that CRF+ neurons serve to inhibit learned freezing behavior. These data suggest that afferent-specific dynamic remodeling of relative excitatory drive to functionally distinct subcortical neuronal output populations represents an important mechanism underlying experience-dependent modification of behavioral selection.
Journal Article
Is there a placental microbiota? A critical review and re-analysis of published placental microbiota datasets
by
Winters, Andrew D.
,
Galaz, Jose
,
Panzer, Jonathan J.
in
16S rRNA gene sequencing
,
Analysis
,
Bacteria
2023
The existence of a placental microbiota is debated. The human placenta has historically been considered sterile and microbial colonization was associated with adverse pregnancy outcomes. Yet, recent DNA sequencing investigations reported a microbiota in typical human term placentas. However, this detected microbiota could represent background DNA or delivery-associated contamination. Using fifteen publicly available 16S rRNA gene datasets, existing data were uniformly re-analyzed with DADA2 to maximize comparability. While Amplicon Sequence Variants (ASVs) identified as
Lactobacillus
, a typical vaginal bacterium, were highly abundant and prevalent across studies, this prevalence disappeared after applying likely DNA contaminant removal to placentas from term cesarean deliveries. A six-study sub-analysis targeting the 16S rRNA gene V4 hypervariable region demonstrated that bacterial profiles of placental samples and technical controls share principal bacterial ASVs and that placental samples clustered primarily by study origin and mode of delivery. Contemporary DNA-based evidence does not support the existence of a placental microbiota.
Importance
Early-gestational microbial influences on human development are unclear. By applying DNA sequencing technologies to placental tissue, bacterial DNA signals were observed, leading some to conclude that a live bacterial placental microbiome exists in typical term pregnancy. However, the low-biomass nature of the proposed microbiome and high sensitivity of current DNA sequencing technologies indicate that the signal may alternatively derive from environmental or delivery-associated bacterial DNA contamination. Here we address these alternatives with a re-analysis of 16S rRNA gene sequencing data from 15 publicly available placental datasets. After identical DADA2 pipeline processing of the raw data, subanalyses were performed to control for mode of delivery and environmental DNA contamination. Both environment and mode of delivery profoundly influenced the bacterial DNA signal from term-delivered placentas. Aside from these contamination-associated signals, consistency was lacking across studies. Thus, placentas delivered at term are unlikely to be the original source of observed bacterial DNA signals.
Journal Article
Differential effects of synthetic psychoactive cathinones and amphetamine stimulants on the gut microbiome in mice
by
Winters, Andrew D.
,
Angoa-Pérez, Mariana
,
Kuhn, Donald M.
in
Addiction
,
Amphetamines
,
Analogs
2020
The list of pharmacological agents that can modify the gut microbiome or be modified by it continues to grow at a high rate. The greatest amount of attention on drug-gut microbiome interactions has been directed primarily at pharmaceuticals used to treat infection, diabetes, cardiovascular conditions and cancer. By comparison, drugs of abuse and addiction, which can powerfully and chronically worsen human health, have received relatively little attention in this regard. Therefore, the main objective of this study was to characterize how selected synthetic psychoactive cathinones (aka \"Bath Salts\") and amphetamine stimulants modify the gut microbiome. Mice were treated with mephedrone (40 mg/kg), methcathinone (80 mg/kg), methamphetamine (5 mg/kg) or 4-methyl-methamphetamine (40 mg/kg), following a binge regimen consisting of 4 injections at 2h intervals. These drugs were selected for study because they are structural analogs that contain a β-keto substituent (methcathinone), a 4-methyl group (4-methyl-methamphetamine), both substituents (mephedrone) or neither (methamphetamine). Mice were sacrificed 1, 2 or 7 days after treatment and DNA from caecum contents was subjected to 16S rRNA sequencing. We found that all drugs caused significant time- and structure-dependent alterations in the diversity and taxonomic structure of the gut microbiome. The two phyla most changed by drug treatments were Firmicutes (methcathinone, 4-methyl-methamphetamine) and Bacteriodetes (methcathinone, 4-methyl-methamphetamine, methamphetamine, mephedrone). Across time, broad microbiome changes from the phylum to genus levels were characteristic of all drugs. The present results signify that these selected psychoactive drugs, which are thought to exert their primary effects within the CNS, can have profound effects on the gut microbiome. They also suggest new avenues of investigation into the possibility that gut-derived signals could modulate drug abuse and addiction via altered communication along the gut-brain axis.
Journal Article
Homeostatic scaling of dynorphin signaling by a non-canonical opioid receptor
2025
The endogenous opioid system provides powerful control over emotions, nociception, and motivation among many other fundamental nervous system functions. Its major components include a panel of opioid peptides that activate four canonical inhibitory opioid receptors. However, its regulatory principles are not fully understood including the existence of additional receptors and other elements. In this study we report the identification of a receptor for the opioid peptide dynorphin. By conducting a screen of a custom library of neuropeptides, we found that orphan receptor GPR139 binds to and is activated by a series of dynorphin peptides. Unlike other opioid receptors, GPR139 couples to Gq/11 and avoids β-arrestin, providing excitatory signaling that homeostatically scales the inhibitory response of neurons to dynorphin. This introduces a non-canonical dynorphin receptor as an essential component of the opioid system.
Li et al. identify dynorphin as an endogenous ligand for orphan receptor GPR139 introducing it as a non-canonical member of the opioid receptor family that triggers excitatory signaling to balance the inhibitory effects of opioids.
Journal Article
Dissociable cognitive impairments in two strains of transgenic Alzheimer’s disease mice revealed by a battery of object-based tests
2019
Object recognition tasks detect cognitive deficits in transgenic Alzheimer’s disease (AD) mouse models. Object recognition, however, is not a unitary process, and there are many uncharacterized facets of object processing with relevance to AD. We therefore systematically evaluated object processing in 5xFAD and 3xTG AD mice to clarify the nature of object recognition-related deficits. Twelve-month-old male and female 5xFAD and 3xTG mice were assessed on tasks for object identity recognition, spatial recognition, and multisensory object perception. Memory and multisensory perceptual impairments were observed, with interesting dissociations between transgenic AD strains and sex that paralleled neuropathological changes. Overreliance on the widespread “object recognition” task threatens to slow discovery of potentially significant and clinically relevant behavioural effects related to this multifaceted cognitive function. The current results support the use of carefully designed object-based test batteries to clarify the relationship between “object recognition” impairments and specific aspects of AD pathology in rodent models.
Journal Article
Muscarinic receptor activation overrides boundary conditions on memory updating in a calcium/calmodulin-dependent manner
by
Huff, Andrew E
,
Messer, William S
,
Winters, Boyer D
in
Acetylcholine receptors (muscarinic)
,
Boundary conditions
,
Ca2+/calmodulin-dependent protein kinase II
2023
Long-term memory storage is a dynamic process requiring flexibility to ensure adaptive behavioural responding in changing environments. Indeed, it is well established that memory reactivation can “destabilize” consolidated traces, leading to various forms of updating. However, the neurobiological mechanisms rendering long-term memories labile and modifiable remain poorly described. Moreover, boundary conditions, such as the age or strength of the memory, can reduce the likelihood of this destabilization; yet, intuitively, these most behaviourally influential of memories should also be modifiable under appropriate conditions. Here, we provide evidence that salient novelty at the time of memory reactivation promotes integrative updating of resistant object memories in rats. Furthermore, blockade of muscarinic acetylcholine receptors (mAChRs; with pirenzepine) or disruption of calcium/calmodulin (Ca2+/CaM) with KN-93, a Ca2+/CaM-binding molecule that inhibits calcium/calmodulin-dependent protein kinase II (CaMKII) activation, in perirhinal cortex (PRh) prevented novelty-induced destabilization and updating of resistant object memories. Finally, PRh M1 mAChR activation (with CDD-0102A) was sufficient to destabilize resistant object memories for updating, and this effect was blocked by KN-93, possibly via inhibition of CaMKII activity. Thus, mAChRs and activation of CaMKII appear to interact as part of a mechanism to override boundary conditions on resistant object memories to ensure integrative modification with novel information. These findings therefore have important implications for understanding the dynamic nature of long-term memory storage and potential treatments for conditions characterized by maladaptive and inflexible memories.
Journal Article
Intra-Amniotic Infection with Ureaplasma parvum Causes Preterm Birth and Neonatal Mortality That Are Prevented by Treatment with Clarithromycin
by
Winters, Andrew D.
,
Levenson, Dustyn
,
Garcia-Flores, Valeria
in
Adult
,
Amniotic fluid
,
Amniotic Fluid - microbiology
2020
Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Multiple etiologies are associated with preterm birth; however, 25% of preterm infants are born to a mother with intra-amniotic infection, most commonly due to invasion of the amniotic cavity by Ureaplasma species. Much research has focused on establishing a link between Ureaplasma species and adverse pregnancy/neonatal outcomes; however, little is known about the taxonomy of and host response against Ureaplasma species. Here, we applied a multifaceted approach, including human samples, in vivo models, and in vitro manipulations, to study the maternal-fetal immunobiology of Ureaplasma infection during pregnancy. Furthermore, we investigated the use of clarithromycin as a treatment for this infection. Our research provides translational knowledge that bolsters scientific understanding of Ureaplasma species as a cause of adverse pregnancy/neonatal outcomes and gives strong evidence for the use of clarithromycin as the recommended treatment for women intra-amniotically infected with Ureaplasma species. Intra-amniotic infection is strongly associated with adverse pregnancy and neonatal outcomes. Most intra-amniotic infections are due to Ureaplasma species; however, the pathogenic potency of these genital mycoplasmas to induce preterm birth is still controversial. Here, we first laid out a taxonomic characterization of Ureaplasma isolates from women with intra-amniotic infection, which revealed that Ureaplasma parvum is the most common bacterium found in this clinical condition. Next, using animal models, we provided a causal link between intra-amniotic inoculation with Ureaplasma species and preterm birth. Importantly, the intra-amniotic inoculation of Ureaplasma species induced high rates of mortality in both preterm and term neonates. The in vivo potency of U. parvum to induce preterm birth was not associated with known virulence factors. However, term-derived and preterm-derived U. parvum isolates were capable of inducing an intra-amniotic inflammatory response. Both U. parvum isolates invaded several fetal tissues, primarily the fetal lung, and caused fetal inflammatory response syndrome. This bacterium was also detected in the placenta, reproductive tissues, and most severely in the fetal membranes, inducing a local inflammatory response that was replicated in an in vitro model. Importantly, treatment with clarithromycin, a recently recommended yet not widely utilized antibiotic, prevented the adverse pregnancy and neonatal outcomes induced by U. parvum . These findings shed light on the maternal-fetal immunobiology of intra-amniotic infection. IMPORTANCE Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Multiple etiologies are associated with preterm birth; however, 25% of preterm infants are born to a mother with intra-amniotic infection, most commonly due to invasion of the amniotic cavity by Ureaplasma species. Much research has focused on establishing a link between Ureaplasma species and adverse pregnancy/neonatal outcomes; however, little is known about the taxonomy of and host response against Ureaplasma species. Here, we applied a multifaceted approach, including human samples, in vivo models, and in vitro manipulations, to study the maternal-fetal immunobiology of Ureaplasma infection during pregnancy. Furthermore, we investigated the use of clarithromycin as a treatment for this infection. Our research provides translational knowledge that bolsters scientific understanding of Ureaplasma species as a cause of adverse pregnancy/neonatal outcomes and gives strong evidence for the use of clarithromycin as the recommended treatment for women intra-amniotically infected with Ureaplasma species.
Journal Article