Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
122
result(s) for
"Wittbrodt, Joachim"
Sort by:
Instantaneous isotropic volumetric imaging of fast biological processes
2019
To capture highly dynamic biological processes at cellular resolution is a recurring challenge in biology. Here we show that combining selective-volume illumination with simultaneous acquisition of orthogonal light fields yields three-dimensional images with high, isotropic spatial resolution and a significant reduction of reconstruction artefacts, thereby overcoming current limitations of light-field microscopy implementations. We demonstrate medaka heart and blood flow imaging at single-cell resolution and free of motion artefacts at volume rates of up to 200 Hz.Iso-LFM enables rapid, instantaneous volumetric imaging of biological processes with isotropic and improved resolution by simultaneously capturing orthogonal light fields.
Journal Article
Activating the regenerative potential of Müller glia cells in a regeneration-deficient retina
2018
Regeneration responses in animals are widespread across phyla. To identify molecular players that confer regenerative capacities to non-regenerative species is of key relevance for basic research and translational approaches. Here, we report a differential response in retinal regeneration between medaka (Oryzias latipes) and zebrafish (Danio rerio). In contrast to zebrafish, medaka Müller glia (olMG) cells behave like progenitors and exhibit a restricted capacity to regenerate the retina. After injury, olMG cells proliferate but fail to self-renew and ultimately only restore photoreceptors. In our injury paradigm, we observed that in contrast to zebrafish, proliferating olMG cells do not maintain sox2 expression. Sustained sox2 expression in olMG cells confers regenerative responses similar to those of zebrafish MG (drMG) cells. We show that a single, cell-autonomous factor reprograms olMG cells and establishes a regeneration-like mode. Our results position medaka as an attractive model to delineate key regeneration factors with translational potential.
All animals have at least some ability to repair their bodies after injury. But certain species can regenerate entire body parts and even internal organs. Salamanders, for example, can regrow their tail and limbs, as well as their eyes and heart. Many species of fish can also regenerate organs and tissues. In comparison, mammals have only limited regenerative capacity. Why does regeneration vary between species, and is it possible to convert a non-regenerating system into a regenerating one?
Laboratory studies of regeneration often use the model organism, zebrafish. Zebrafish can restore their sight after an eye injury by regenerating the retina, the light-sensitive tissue at the back of the eye. They are able to do this thanks to cells in the retina called Müller glial cells. These behave like stem cells. They divide to produce identical copies of themselves, which then transform into all of the different cell types necessary to produce a new retina.
Lust and Wittbrodt now show that a distant relative of the zebrafish, the Japanese ricefish ‘medaka’, lacks these regenerative skills. Although Müller glial cells in medaka also divide after injury, they give rise to only a single type of retinal cell. This means that these fish cannot regenerate an entire retina. Lust and Wittbrodt demonstrate that in medaka, but not zebrafish, levels of a protein called Sox2 fall after eye injury. As Sox2 has been shown to be important for regeneration in zebrafish Müller glial cells, the loss of Sox2 may be preventing regeneration in medaka. Consistent with this, restoring Sox2 levels in medaka Müller glial cells enabled them to turn into several different types of retinal cell.
Sox2 is also present in the Müller glial cells of other species with backbones, including chickens, mice, and humans. Future experiments should test whether loss of Sox2 after injury contributes to the lack of regeneration in these species. If it does, the next question will be whether restoring Sox2 can drive a regenerative response.
Journal Article
CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool
by
Wittbrodt, Joachim
,
Stemmer, Manuel
,
del Sol Keyer, Maria
in
Animals
,
Binding Sites
,
Cell adhesion & migration
2015
Engineering of the CRISPR/Cas9 system has opened a plethora of new opportunities for site-directed mutagenesis and targeted genome modification. Fundamental to this is a stretch of twenty nucleotides at the 5' end of a guide RNA that provides specificity to the bound Cas9 endonuclease. Since a sequence of twenty nucleotides can occur multiple times in a given genome and some mismatches seem to be accepted by the CRISPR/Cas9 complex, an efficient and reliable in silico selection and evaluation of the targeting site is key prerequisite for the experimental success. Here we present the CRISPR/Cas9 target online predictor (CCTop, http://crispr.cos.uni-heidelberg.de) to overcome limitations of already available tools. CCTop provides an intuitive user interface with reasonable default parameters that can easily be tuned by the user. From a given query sequence, CCTop identifies and ranks all candidate sgRNA target sites according to their off-target quality and displays full documentation. CCTop was experimentally validated for gene inactivation, non-homologous end-joining as well as homology directed repair. Thus, CCTop provides the bench biologist with a tool for the rapid and efficient identification of high quality target sites.
Journal Article
Efficient single-copy HDR by 5’ modified long dsDNA donors
by
Kellner, Tanja
,
Tsingos, Erika
,
Gutierrez-Triana, Jose Arturo
in
Animals
,
Annealing
,
Biochemistry
2018
CRISPR/Cas9 efficiently induces targeted mutations via non-homologous-end-joining but for genome editing, precise, homology-directed repair (HDR) of endogenous DNA stretches is a prerequisite. To favor HDR, many approaches interfere with the repair machinery or manipulate Cas9 itself. Using Medaka we show that the modification of 5’ ends of long dsDNA donors strongly enhances HDR, favors efficient single-copy integration by retaining a monomeric donor conformation thus facilitating successful gene replacement or tagging.
CRISPR/Cas9 technology has revolutionized the ability of researchers to edit the DNA of any organism whose genome has already been sequenced. In the editing process, a section of RNA acts as a guide to match up to the location of the target DNA. The enzyme Cas9 then makes a cut in both strands of the DNA at this specific location. New segments of DNA can be introduced to the cell, incorporated into DNA ‘templates’. The cell uses the template to help it to heal the double-strand break, and in doing so adds the new DNA segment into the organism’s genome.
A drawback of CRISPR/Cas9 is that it often introduces multiple copies of the new DNA segment into the genome because the templates can bind to each other before being pasted into place. In addition, some parts of the new DNA segment can be missed off during the editing process. However, most applications of CRISPR/Cas9 – for example, to replace a defective gene with a working version – require exactly one whole copy of the desired DNA to be inserted into the genome.
In order to achieve more accurate CRISPR/Cas9 genome editing, Gutierrez-Triana, Tavhelidse, Thumberger et al. attached additional molecules to the end of the DNA template to shield the DNA from mistakes during editing. The modified template was used to couple a stem cell gene to a reporter that produces a green fluorescent protein into the genome of fish embryos. The fluorescent proteins made it easy to identify when the coupling was successful.
Gutierrez-Triana et al. found that the additional molecules prevented multiple templates from joining together end to end, and ensured the full DNA segment was inserted into the genome. Furthermore, the results of the experiments showed that only one copy of the template was inserted into the DNA of the fish. In the future, the new template will allow DNA to be edited in a more controlled way both in basic research and in therapeutic applications.
Journal Article
Deep learning-enhanced light-field imaging with continuous validation
by
Wagner, Nils
,
Gierten Jakob
,
Kreshuk Anna
in
Algorithms
,
Artificial intelligence
,
Artificial neural networks
2021
Visualizing dynamic processes over large, three-dimensional fields of view at high speed is essential for many applications in the life sciences. Light-field microscopy (LFM) has emerged as a tool for fast volumetric image acquisition, but its effective throughput and widespread use in biology has been hampered by a computationally demanding and artifact-prone image reconstruction process. Here, we present a framework for artificial intelligence–enhanced microscopy, integrating a hybrid light-field light-sheet microscope and deep learning–based volume reconstruction. In our approach, concomitantly acquired, high-resolution two-dimensional light-sheet images continuously serve as training data and validation for the convolutional neural network reconstructing the raw LFM data during extended volumetric time-lapse imaging experiments. Our network delivers high-quality three-dimensional reconstructions at video-rate throughput, which can be further refined based on the high-resolution light-sheet images. We demonstrate the capabilities of our approach by imaging medaka heart dynamics and zebrafish neural activity with volumetric imaging rates up to 100 Hz.A deep learning–based algorithm enables efficient reconstruction of light-field microscopy data at video rate. In addition, concurrently acquired light-sheet microscopy data provide ground truth data for training, validation and refinement of the algorithm.
Journal Article
The Genomic and Genetic Toolbox of the Teleost Medaka ( Oryzias latipes )
by
Loosli, Felix
,
Kirchmaier, Stephan
,
Wittbrodt, Joachim
in
Animals
,
Animals, Genetically Modified - genetics
,
Evolution & development
2015
The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system.
Journal Article
Automated high-throughput heartbeat quantification in medaka and zebrafish embryos under physiological conditions
by
Gierten, Jakob
,
Loosli, Felix
,
Schock, Christian
in
631/136/334/1874/1708
,
631/136/334/1874/763
,
631/154/1435/2163
2020
Accurate quantification of heartbeats in fish models is an important readout to study cardiovascular biology, disease states and pharmacology. However, dependence on anaesthesia, laborious sample orientation or requirement for fluorescent reporters have hampered the use of high-throughput heartbeat analysis. To overcome these limitations, we established an efficient screening assay employing automated label-free heart rate determination of randomly oriented, non-anesthetized medaka (
Oryzias latipes
) and zebrafish (
Danio rerio
) embryos in microtiter plates. Automatically acquired bright-field data feeds into an easy-to-use
HeartBeat
software with graphical user interface for automated quantification of heart rate and rhythm. Sensitivity of the assay was demonstrated by profiling heart rates during entire embryonic development. Our analysis revealed rapid adaption of heart rates to temperature changes, which has implications for standardization of experimental layout. The assay allows scoring of multiple embryos per well enabling a throughput of >500 embryos per 96-well plate. In a proof of principle screen for compound testing, we captured concentration-dependent effects of nifedipine and terfenadine over time. Our novel assay permits large-scale applications ranging from phenotypic screening, interrogation of gene functions to cardiovascular drug development.
Journal Article
One for All—A Highly Efficient and Versatile Method for Fluorescent Immunostaining in Fish Embryos
2011
For the detection and sub-cellular (co)-localization of proteins in the context of the tissue or organism immunostaining in whole mount preparations or on sections is still the best approach. So far, each antibody required its own fixation and antigen retrieval protocol so that optimizing immunostaining turned out to be tedious and time consuming.
Here we present a novel method to efficiently retrieve the antigen in a widely applicable standard protocol, facilitating fluorescent immunostaining of both cryosections and whole mount preparations in zebrafish (Danio rerio) and medaka (Oryzias latipes).
Our method overcomes the loss of sections and damage of tissue and cell morphology, and allows parallel immunostaining in multiple colors, co-immunostaining with fluorescent proteins in transgenic fish lines and in combination with whole mount in situ hybridization.
Journal Article
Introducing Biomedisa as an open-source online platform for biomedical image segmentation
by
Heethoff, Michael
,
Tan Jerome, Nicholas
,
Chilingaryan, Suren A.
in
631/1647/245
,
631/1647/794
,
Algorithms
2020
We present Biomedisa, a free and easy-to-use open-source online platform developed for semi-automatic segmentation of large volumetric images. The segmentation is based on a smart interpolation of sparsely pre-segmented slices taking into account the complete underlying image data. Biomedisa is particularly valuable when little a priori knowledge is available, e.g. for the dense annotation of the training data for a deep neural network. The platform is accessible through a web browser and requires no complex and tedious configuration of software and model parameters, thus addressing the needs of scientists without substantial computational expertise. We demonstrate that Biomedisa can drastically reduce both the time and human effort required to segment large images. It achieves a significant improvement over the conventional approach of densely pre-segmented slices with subsequent morphological interpolation as well as compared to segmentation tools that also consider the underlying image data. Biomedisa can be used for different 3D imaging modalities and various biomedical applications.
Manual segmentation of biological images is a time-consuming task. Here the authors present Biomedisa, an open-source online platform for segmentation of large volumetric images starting from sparsely presegmented slices.
Journal Article
Eye morphogenesis driven by epithelial flow into the optic cup facilitated by modulation of bone morphogenetic protein
by
Krieglstein, Kerstin
,
Schütz, Lucas
,
Wittbrodt, Joachim
in
Animals
,
BMP antagonist
,
Bone morphogenetic proteins
2015
The hemispheric, bi-layered optic cup forms from an oval optic vesicle during early vertebrate eye development through major morphological transformations. The overall basal surface, facing the developing lens, is increasing, while, at the same time, the space basally occupied by individual cells is decreasing. This cannot be explained by the classical view of eye development. Using zebrafish (Danio rerio) as a model, we show that the lens-averted epithelium functions as a reservoir that contributes to the growing neuroretina through epithelial flow around the distal rims of the optic cup. We propose that this flow couples morphogenesis and retinal determination. Our 4D data indicate that future stem cells flow from their origin in the lens-averted domain of the optic vesicle to their destination in the ciliary marginal zone. BMP-mediated inhibition of the flow results in ectopic neuroretina in the RPE domain. Ultimately the ventral fissure fails to close resulting in coloboma.
The eye is our most important organ for sensing and recognizing our environment. In humans and other vertebrates, the eye forms from an outgrowth of the brain as the embryo develops. This outgrowth is called the optic vesicle and it is rapidly transformed into a cup-shaped structure known as the optic cup. Defects in this process prevent the optic cup from closing completely, which leads to a severe condition called Coloboma—one of the most frequent causes of blindness in children.
The optic cup has two distinct layers: the inside layer—known as the neuroretina—contains light sensitive cells and is surrounded by the other layer called the pigmented epithelium. It is thought that the neural retina is made from cells from the side of the optic vesicle that faces the lens, and the pigmented epithelium is formed by cells from the other side of the vesicle. This is a plausible explanation and is well accepted, but it cannot explain how the neuroretina can become five times larger as the cup forms.
Heermann et al. addressed this problem by using four-dimensional in vivo microscopy to follow individual cells as the optic cup forms in living zebrafish embryos. The experiments show that the neuroretina is made of cells from both sides of the optic vesicle. Cells from the back of the optic vesicle (furthest away from the lens) join the rest of the cells by moving around the outside rim of the cup.
Further experiments found that a signaling molecule called BMP—which is crucial to the normal development of the eye—controls the flow of cells around the developing optic cup. This factor needs to be carefully controlled during the development of the eye; when BMP activity was artificially increased, the flow of cells stopped, resulting in neuroretinal tissue developing in the wrong place (in the outer layer of the optic cup).
The experiments also reveal that the stem cells in the retina—which divide to produce new cells throughout the life of the zebrafish—originate from two distinct areas in the optic vesicle.
Heermann et al.'s findings challenge the textbook model of eye development by revealing that cells from both sides of the optic vesicle contribute to the neuroretina and that retinal stem cells originate from a specific place in the developing eye. A future challenge will be to understand how the movement of the cells into the neuroretina is coordinated to make a perfectly shaped eye.
Journal Article