Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
43 result(s) for "Witters, Peter"
Sort by:
Understanding Inborn Errors of Metabolism through Metabolomics
Inborn errors of metabolism (IEMs) are rare diseases caused by a defect in a single enzyme, co-factor, or transport protein. For most IEMs, no effective treatment is available and the exact disease mechanism is unknown. The application of metabolomics and, more specifically, tracer metabolomics in IEM research can help to elucidate these disease mechanisms and hence direct novel therapeutic interventions. In this review, we will describe the different approaches to metabolomics in IEM research. We will discuss the strengths and weaknesses of the different sample types that can be used (biofluids, tissues or cells from model organisms; modified cell lines; and patient fibroblasts) and when each of them is appropriate to use.
Optimisation of children z-score calculation based on new statistical techniques
Expressing anthropometric parameters (height, weight, BMI) as z-score is a key principle in the clinical assessment of children and adolescents. The Centre for Disease Control and Prevention (CDC) growth charts and the CDC-LMS method for z-score calculation are widely used to assess growth and nutritional status, though they can be imprecise in some percentiles. To improve the accuracy of z-score calculation by revising the statistical method using the original data used to develop current z-score calculators. A Gaussian Process Regressions (GPR) was designed and internally validated. Z-scores for weight-for-age (WFA), height-for-age (HFA) and BMI-for-age (BMIFA) were compared with WHO and CDC-LMS methods in 1) standard z-score cut-off points, 2) simulated population of 3000 children and 3) real observations 212 children aged 2 to 18 yo. GPR yielded more accurate calculation of z-scores for standard cut-off points (p<<0.001) with respect to CDC-LMS and WHO approaches. WFA, HFA and BMIFA z-score calculations based on the 3 different methods using simulated and real patients, showed a large variation irrespective of gender and age. Z-scores around 0 +/- 1 showed larger variation than the values above and below +/- 2. The revised z-score calculation method was more accurate than CDC-LMS and WHO methods for standard cut-off points. On simulated and real data, GPR based calculation provides more accurate z-score determinations, and thus, a better classification of patients below and above cut-off points. Statisticians and clinicians should consider the potential benefits of updating their calculation method for an accurate z-score determination.
Long-term safety and clinical outcomes of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency: two-year results
Background Olipudase alfa is a recombinant human acid sphingomyelinase (ASM) enzyme replacement therapy (ERT) for non-central-nervous-system manifestations of acid sphingomyelinase deficiency (ASMD). We report 2-year cumulative safety and efficacy data after olipudase alfa treatment in 20 children (four adolescents [12–17 year], nine children [6–11 year], and seven infants/early child [1–5 year]) with baseline splenomegaly and growth deficits who completed the 1-year ASCEND-Peds clinical trial (NCT02292654) and who continue to receive olipudase alfa in a long-term study (NCT02004704). Efficacy endpoints include spleen and liver volumes, diffusing capacity of the lung for carbon monoxide (DL CO ), high-resolution computed tomography (HRCT) lung imaging, lipid profiles, liver function tests, and height Z-scores. Results All 20 former ASCEND-Peds patients completed at least 2 years of olipudase alfa treatment. No patient discontinued and no new safety issue arose during the second year of treatment; 99% of adverse events were mild or moderate. During year 2, one patient had two treatment-related serious events of hypersensitivity that resolved. Mean reductions from baseline in spleen and liver volumes were 61% and 49%, respectively ( p  < 0.0001) and mean percent-predicted-DL CO increased by 46.6% ( p  < 0.0001) in nine patients who performed the test at baseline. Lipid profiles and elevated liver transaminase levels that improved or normalized by 1 year remained stable. Mean height Z-scores improved in all age groups (mean change from baseline 1.17, P  < 0.0001). Conclusion Olipudase alfa was generally well-tolerated during 2 years of treatment. Improvements in clinically relevant disease endpoints observed during the first year of treatment were maintained or augmented in the second year. Trial registration NCT02004704 registered 26 Nov 2013, https://clinicaltrials.gov/ct2/show/record/NCT02004704 .
Glycosphingolipid synthesis is impaired in SLC35A2-CDG and improves with galactose supplementation
SLC35A2-CDG is an X-linked congenital disorder of glycosylation (CDG), characterized by defective UDP-galactose transport into the Golgi and endoplasmic reticulum and consequent insufficient galactosylation of glycans. Clinically, this translates into a range of predominantly neurological symptoms. Although the pathomechanism of this disorder is not fully understood, oral galactose supplementation has led to clinical and biochemical improvement in some patients. Here, we show that protein glycosylation (N- and O-linked) was only minimally disturbed in SLC35A2-CDG patient-derived fibroblasts. However, lipid glycosylation was significantly impaired, with accumulation of glucosylceramide and deficiency of digalactosylated glycosphingolipids (GSLs) and complex gangliosides. Galactose supplementation increased UDP-galactose, its transport into the Golgi, and improved deficient GSL synthesis through direct incorporation of the provided galactose. This improved GSL homeostasis in all patient-derived fibroblasts and in another SLC35A2 deficient cell model (CHO-Lec8). Additionally, SLC35A2-CDG serum analysis identified hydroxylated GSLs, particularly GM3, as potential disease biomarkers. Given the essential role of gangliosides in central nervous system function, their deficiency is likely a key factor in the neurological involvement of this disorder. These findings pave the way for new nutritional therapies with GSL supplements and highlight the importance of studying lipid glycosylation to better understand the complex pathophysiology of CDG.
Spontaneous improvement of carbohydrate-deficient transferrin in PMM2-CDG without mannose observed in CDG natural history study
A recent report on long-term dietary mannose supplementation in phosphomannomutase 2 deficiency (PMM2-CDG) claimed improved glycosylation and called for double-blind randomized study of the dietary supplement in PMM2-CDG patients. A lack of efficacy of short-term mannose supplementation in multiple prior reports challenge this study’s conclusions. Additionally, some CDG types have previously been reported to demonstrate spontaneous improvement in glycosylated biomarkers, including transferrin. We have likewise observed improvements in transferrin glycosylation without mannose supplementation. This observation questions the reliability of transferrin as a therapeutic outcome measure in clinical trials for PMM2-CDG. We are concerned that renewed focus on mannose therapy in PMM2-CDG will detract from clinical trials of more promising therapies. Approaches to increase efficiency of clinical trials and ultimately improve patients’ lives requires prospective natural history studies and identification of reliable biomarkers linked to clinical outcomes in CDG. Collaborations with patients and families are essential to identifying meaningful study outcomes.
D-galactose supplementation in individuals with PMM2-CDG: results of a multicenter, open label, prospective pilot clinical trial
PMM2-CDG is the most prevalent congenital disorder of glycosylation (CDG) with only symptomatic therapy. Some CDG have been successfully treated with D-galactose. We performed an open-label pilot trial with D-galactose in 9 PMM2-CDG patients. Overall, there was no significant improvement but some milder patients did show positive clinical changes; also there was a trend toward improved glycosylation. Larger placebo-controlled studies are required to determine whether D-galactose could be used as supportive treatment in PMM2-CDG patients. Trial registration ClinicalTrials.gov Identifier: NCT02955264. Registered 4 November 2016, https://clinicaltrials.gov/ct2/show/NCT02955264
Cystic fibrosis and alpha-1 antitrypsin deficiency: case report and review of literature
Background This case report describes a child born with both cystic fibrosis (CF) and alpha-1 antitrypsin deficiency (A1ATD). Both are autosomal recessive inherited diseases, mainly affecting the lungs and the liver. The combination of both diseases together is rare and may lead to a fulminant disease with limited life span. To the best of our knowledge, no case has been reported of a patient born with both diseases. Case presentation After an uneventful pregnancy, a male baby was born with meconium ileus. The suspected diagnosis of CF was confirmed based on the sweat test and genetic analysis. The child developed persisting cholestasis, too severe to be likely caused by CF alone and indicating an associated problem. The diagnosis of A1ATD was established based on clinical suspicion (persisting cholestasis), decreased serum alpha-1 antitrypsin and genetic analysis. Supportive therapy was started, however the boy evolved to rapidly progressive liver disease leading to liver failure which necessitated an infant liver transplantation. Conclusions This case illustrates the complexity of care in case of two severe inherited diseases as well as post solid organ transplant care.
Efficacy and safety of D,L-3-hydroxybutyrate (D,L-3-HB) treatment in multiple acyl-CoA dehydrogenase deficiency
Purpose Multiple acyl-CoA dehydrogenase deficiency (MADD) is a life-threatening, ultrarare inborn error of metabolism. Case reports described successful D,L-3-hydroxybutyrate (D,L-3-HB) treatment in severely affected MADD patients, but systematic data on efficacy and safety is lacking. Methods A systematic literature review and an international, retrospective cohort study on clinical presentation, D,L-3-HB treatment method, and outcome in MADD(-like) patients. Results Our study summarizes 23 MADD(-like) patients, including 14 new cases. Median age at clinical onset was two months (interquartile range [IQR]: 8 months). Median age at starting D,L-3-HB was seven months (IQR: 4.5 years). D,L-3-HB doses ranged between 100 and 2600 mg/kg/day. Clinical improvement was reported in 16 patients (70%) for cardiomyopathy, leukodystrophy, liver symptoms, muscle symptoms, and/or respiratory failure. D,L-3-HB appeared not effective for neuropathy. Survival appeared longer upon D,L-3-HB compared with historical controls. Median time until first clinical improvement was one month, and ranged up to six months. Reported side effects included abdominal pain, constipation, dehydration, diarrhea, and vomiting/nausea. Median D,L-3-HB treatment duration was two years (IQR: 6 years). D,L-3-HB treatment was discontinued in 12 patients (52%). Conclusion The strength of the current study is the international pooling of data demonstrating that D,L-3-HB treatment can be effective and safe in MADD(-like) patients.
Liver transplantation for very severe hepatopulmonary syndrome due to vitamin A-induced chronic liver disease in a patient with Shwachman-Diamond syndrome
Vitamin A intoxication is a rare cause of liver disease, but the risk increases in patients with underlying liver dysfunction. We present a patient with Shwachman-Diamond Syndrome who developed liver fibrosis, portal hypertension and very severe hepatopulmonary syndrome as a consequence of chronic vitamin A intoxication. She underwent successful liver transplantation with complete resolution of the pulmonary shunting.