Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
117 result(s) for "Witztum, Joseph L."
Sort by:
Innate sensing of oxidation-specific epitopes in health and disease
Key Points Oxidative stress results in the oxidative damage of membrane lipids, leading to the formation of neo-self epitopes, which are known as oxidation-specific epitopes (OSEs). Major carriers of OSEs are dying cells, microvesicles and damaged proteins and lipoproteins, such as oxidized low-density lipoproteins. OSEs are recognized by multiple arcs of the innate immune system, such as soluble pattern recognition receptors (natural antibodies and complement components) and cellular pattern recognition receptors (Toll-like receptors and scavenger receptors). OSEs have an important role in physiological processes by serving as markers of oxidatively modified endogenous structures, allowing the immune system to mediate their clearance and to maintain homeostasis. The accumulation of OSEs can trigger sterile inflammation. OSEs have been suggested to contribute, as drivers of disease development, to various chronic and acute inflammatory diseases, including atherosclerosis, non-alcoholic steatohepatitis and age-related macular degeneration. Oxidation-specific epitopes (OSEs) function as markers of oxidative damage of membrane lipids. This Review discusses the immune recognition of OSEs, as well as their role in the maintenance of tissue homeostasis and their contribution to the development of inflammatory diseases. Ageing, infections and inflammation result in oxidative stress that can irreversibly damage cellular structures. The oxidative damage of lipids in membranes or lipoproteins is one of these deleterious consequences that not only alters lipid function but also leads to the formation of neo-self epitopes — oxidation-specific epitopes (OSEs) — which are present on dying cells and damaged proteins. OSEs represent endogenous damage-associated molecular patterns that are recognized by pattern recognition receptors and the proteins of the innate immune system, and thereby enable the host to sense and remove dangerous biological waste and to maintain homeostasis. If this system is dysfunctional or overwhelmed, the accumulation of OSEs can trigger chronic inflammation and the development of diseases, such as atherosclerosis and age-related macular degeneration. Understanding the molecular components and mechanisms that are involved in this process will help to identify individuals with an increased risk of developing chronic inflammation, and will also help to indicate novel modes of therapeutic intervention.
Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice
Oxidized phospholipids (OxPL) are ubiquitous, are formed in many inflammatory tissues, including atherosclerotic lesions, and frequently mediate proinflammatory changes 1 . Because OxPL are mostly the products of non-enzymatic lipid peroxidation, mechanisms to specifically neutralize them are unavailable and their roles in vivo are largely unknown. We previously cloned the IgM natural antibody E06, which binds to the phosphocholine headgroup of OxPL, and blocks the uptake of oxidized low-density lipoprotein (OxLDL) by macrophages and inhibits the proinflammatory properties of OxPL 2 – 4 . Here, to determine the role of OxPL in vivo in the context of atherogenesis, we generated transgenic mice in the Ldlr −/− background that expressed a single-chain variable fragment of E06 (E06-scFv) using the Apoe promoter. E06-scFv was secreted into the plasma from the liver and macrophages, and achieved sufficient plasma levels to inhibit in vivo macrophage uptake of OxLDL and to prevent OxPL-induced inflammatory signalling. Compared to Ldlr −/− mice, Ldlr −/− E06-scFv mice had 57–28% less atherosclerosis after 4, 7 and even 12 months of 1% high-cholesterol diet. Echocardiographic and histologic evaluation of the aortic valves demonstrated that E06-scFv ameliorated the development of aortic valve gradients and decreased aortic valve calcification. Both cholesterol accumulation and in vivo uptake of OxLDL were decreased in peritoneal macrophages, and both peritoneal and aortic macrophages had a decreased inflammatory phenotype. Serum amyloid A was decreased by 32%, indicating decreased systemic inflammation, and hepatic steatosis and inflammation were also decreased. Finally, the E06-scFv prolonged life as measured over 15 months. Because the E06-scFv lacks the functional effects of an intact antibody other than the ability to bind OxPL and inhibit OxLDL uptake in macrophages, these data support a major proatherogenic role of OxLDL and demonstrate that OxPL are proinflammatory and proatherogenic, which E06 counteracts in vivo. These studies suggest that therapies inactivating OxPL may be beneficial for reducing generalized inflammation, including the progression of atherosclerosis, aortic stenosis and hepatic steatosis. A single-chain variable fragment of the antibody E06, which binds to the phosphocholine headgroup of oxidized phospholipids, blocks the uptake of oxidized low-density lipoprotein by macrophages, and reduces inflammation and atherosclerosis in hypercholesterolaemic mice.
Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials
Elevated lipoprotein(a) (Lp[a]) is a highly prevalent (around 20% of people) genetic risk factor for cardiovascular disease and calcific aortic valve stenosis, but no approved specific therapy exists to substantially lower Lp(a) concentrations. We aimed to assess the efficacy, safety, and tolerability of two unique antisense oligonucleotides designed to lower Lp(a) concentrations. We did two randomised, double-blind, placebo-controlled trials. In a phase 2 trial (done in 13 study centres in Canada, the Netherlands, Germany, Denmark, and the UK), we assessed the effect of IONIS-APO(a)Rx, an oligonucleotide targeting apolipoprotein(a). Participants with elevated Lp(a) concentrations (125–437 nmol/L in cohort A; ≥438 nmol/L in cohort B) were randomly assigned (in a 1:1 ratio in cohort A and in a 4:1 ratio in cohort B) with an interactive response system to escalating-dose subcutaneous IONIS-APO(a)Rx (100 mg, 200 mg, and then 300 mg, once a week for 4 weeks each) or injections of saline placebo, once a week, for 12 weeks. Primary endpoints were mean percentage change in fasting plasma Lp(a) concentration at day 85 or 99 in the per-protocol population (participants who received more than six doses of study drug) and safety and tolerability in the safety population. In a phase 1/2a first-in-man trial, we assessed the effect of IONIS-APO(a)-LRx, a ligand-conjugated antisense oligonucleotide designed to be highly and selectively taken up by hepatocytes, at the BioPharma Services phase 1 unit (Toronto, ON, Canada). Healthy volunteers (Lp[a] ≥75 nmol/L) were randomly assigned to receive a single dose of 10–120 mg IONIS-APO(a)LRx subcutaneously in an ascending-dose design or placebo (in a 3:1 ratio; single-ascending-dose phase), or multiple doses of 10 mg, 20 mg, or 40 mg IONIS-APO(a)LRx subcutaneously in an ascending-dose design or placebo (in an 8:2 ratio) at day 1, 3, 5, 8, 15, and 22 (multiple-ascending-dose phase). Primary endpoints were mean percentage change in fasting plasma Lp(a) concentration, safety, and tolerability at day 30 in the single-ascending-dose phase and day 36 in the multiple-ascending-dose phase in participants who were randomised and received at least one dose of study drug. In both trials, the randomised allocation sequence was generated by Ionis Biometrics or external vendor with a permuted-block randomisation method. Participants, investigators, sponsor personnel, and clinical research organisation staff who analysed the data were all masked to the treatment assignments. Both trials are registered with ClinicalTrials.gov, numbers NCT02160899 and NCT02414594. From June 25, 2014, to Nov 18, 2015, we enrolled 64 participants to the phase 2 trial (51 in cohort A and 13 in cohort B). 35 were randomly assigned to IONIS-APO(a)Rx and 29 to placebo. At day 85/99, participants assigned to IONIS-APO(a)Rx had mean Lp(a) reductions of 66·8% (SD 20·6) in cohort A and 71·6% (13·0) in cohort B (both p<0·0001 vs pooled placebo). From April 15, 2015, to Jan 11, 2016, we enrolled 58 healthy volunteers to the phase 1/2a trial of IONIS-APO(a)-LRx. Of 28 participants in the single-ascending-dose phase, three were randomly assigned to 10 mg, three to 20 mg, three to 40 mg, six to 80 mg, six to 120 mg, and seven to placebo. Of 30 participants in the multiple-ascending-dose phase, eight were randomly assigned to 10 mg, eight to 20 mg, eight to 40 mg, and six to placebo. Significant dose-dependent reductions in mean Lp(a) concentrations were noted in all single-dose IONIS-APO(a)-LRx groups at day 30. In the multidose groups, IONIS-APO(a)-LRx resulted in mean reductions in Lp(a) of 66% (SD 21·8) in the 10 mg group, 80% (SD 13·7%) in the 20 mg group, and 92% (6·5) in the 40 mg group (p=0·0007 for all vs placebo) at day 36. Both antisense oligonucleotides were safe. There were two serious adverse events (myocardial infarctions) in the IONIS-APO(a)Rx phase 2 trial, one in the IONIS-APO(a)Rx and one in the placebo group, but neither were thought to be treatment related. 12% of injections with IONIS-APO(a)Rx were associated with injection-site reactions. IONIS-APO(a)-LRx was associated with no injection-site reactions. IONIS-APO(a)-LRx is a novel, tolerable, potent therapy to reduce Lp(a) concentrations. IONIS-APO(a)-LRx might mitigate Lp(a)-mediated cardiovascular risk and is being developed for patients with elevated Lp(a) concentrations with existing cardiovascular disease or calcific aortic valve stenosis. Ionis Pharmaceuticals.
Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides
Angiopoietin-like 3 (ANGPTL3) inhibits endothelial lipase and lipoprotein lipase. Injection of antisense oligonucleotides targeting ANGPTL3 messenger RNA effects a reduction of atherogenic lipoproteins in humans and mice and a slowing of progression of atherosclerosis in mice.
Targeting APOC3 in the Familial Chylomicronemia Syndrome
In this study, investigators found that APOC3, a key regulator of triglyceride metabolism, had a profound and clinically relevant effect on triglyceride levels through a mechanism that is independent of lipoprotein lipase. The familial chylomicronemia syndrome is a rare autosomal recessive disease characterized by the buildup in the blood of fat particles called chylomicrons (chylomicronemia), severe hypertriglyceridemia, and the risk of recurrent and potentially fatal pancreatitis and other complications. 1 It is caused by mutations in the gene encoding LPL or, less frequently, by mutations in genes encoding other proteins necessary for LPL function. 2 Patients with this syndrome have plasma triglyceride levels ranging from 10 to 100 times the normal value (1500 to 15,000 mg per deciliter [17 to 170 mmol per liter]), eruptive xanthomas, arthralgias, neurologic symptoms, lipemia retinalis, and hepatosplenomegaly. 3 Nearly . . .
Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study
Summary Background Lipoprotein(a) (Lp[a]) is a risk factor for cardiovascular disease and calcific aortic valve stenosis. No effective therapies to lower plasma Lp(a) concentrations exist. We have assessed the safety, pharmacokinetics, and pharmacodynamics of ISIS-APO(a)Rx , a second-generation antisense drug designed to reduce the synthesis of apolipoprotein(a) (apo[a]) in the liver. Methods In this randomised, double-blind, placebo-controlled, phase 1 study at the PAREXEL Clinical Pharmacology Research Unit (Harrow, Middlesex, UK), we screened for healthy adults aged 18–65 years, with a body-mass index less than 32·0 kg/m2 , and Lp(a) concentration of 25 nmol/L (100 mg/L) or more. Via a randomisation technique, we randomly assigned participants to receive a single subcutaneous injection of ISIS-APO(a)Rx (50 mg, 100 mg, 200 mg, or 400 mg) or placebo (3:1) in the single-dose part of the study or to receive six subcutaneous injections of ISIS-APO(a)Rx (100 mg, 200 mg, or 300 mg, for a total dose exposure of 600 mg, 1200 mg, or 1800 mg) or placebo (4:1) during a 4 week period in the multi-dose part of the study. Participants, investigators, and study staff were masked to the treatment assignment, except for the pharmacist who prepared the ISIS-APO(a)Rx or placebo. The primary efficacy endpoint was the percentage change from baseline in Lp(a) concentration at 30 days in the single-dose cohorts and at 36 days for the multi-dose cohorts. Safety and tolerability was assessed 1 week after last dose and included determination of the incidence, severity, and dose relation of adverse events and changes in laboratory variables, including lipid panel, routine haematology, blood chemistry, urinalysis, coagulation, and complement variables. Other assessments included vital signs, a physical examination, and 12-lead electrocardiograph. This trial is registered with European Clinical Trials Database, number 2012-004909-27. Findings Between Feb 27, 2013, and July 15, 2013, 47 (23%) of 206 screened volunteers were randomly assigned to receive ISIS-APO(a)Rx as a single-dose or multi-dose of ascending concentrations or placebo. In the single-dose study, we assigned three participants to receive 50 mg ISIS-APO(a)Rx , three participants to receive 100 mg ISIS-APO(a)Rx , three participants to receive 200 mg ISIS-APO(a)Rx , three participants to receive 400 mg ISIS-APO(a)Rx , and four participants to receive placebo. All 16 participants completed treatment and follow-up and were included in the pharmacodynamics, pharmacokinetics, and safety analyses. For the multi-dose study, we assigned eight participants to receive six doses of 100 mg ISIS-APO(a)Rx , nine participants to receive six doses of 200 mg ISIS-APO(a)Rx , eight participants to receive six doses of 300 mg ISIS-APO(a)Rx , and six participants to receive six doses of placebo. Whereas single doses of ISIS-APO(a)Rx (50–400 mg) did not decrease Lp(a) concentrations at day 30, six doses of ISIS-APO(a)Rx (100–300 mg) resulted in dose-dependent, mean percentage decreases in plasma Lp(a) concentration of 39·6% from baseline in the 100 mg group (p=0·005), 59·0% in the 200 mg group (p=0·001), and 77·8% in the 300 mg group (p=0·001). Similar reductions were observed in the amount of oxidized phospholipids associated with apolipoprotein B-100 and apolipoprotein(a). Mild injection site reactions were the most common adverse events. Interpretation ISIS-APO(a)Rx results in potent, dose-dependent, selective reductions of plasma Lp(a). The safety and tolerability support continued clinical development of ISIS-APO(a)Rx as a potential therapeutic drug to reduce the risk of cardiovascular disease and calcific aortic valve stenosis in patients with elevated Lp(a) concentration. Funding Isis Pharmaceuticals.
Leucocyte Telomere Length and Risk of Type 2 Diabetes Mellitus: New Prospective Cohort Study and Literature-Based Meta-Analysis
Short telomeres have been linked to various age-related diseases. We aimed to assess the association of telomere length with incident type 2 diabetes mellitus (T2DM) in prospective cohort studies. Leucocyte relative telomere length (RTL) was measured using quantitative polymerase chain reaction in 684 participants of the prospective population-based Bruneck Study (1995 baseline), with repeat RTL measurements performed in 2005 (n = 558) and 2010 (n = 479). Hazard ratios for T2DM were calculated across quartiles of baseline RTL using Cox regression models adjusted for age, sex, body-mass index, smoking, socio-economic status, physical activity, alcohol consumption, high-density lipoprotein cholesterol, log high-sensitivity C-reactive protein, and waist-hip ratio. Separate analyses corrected hazard ratios for within-person variability using multivariate regression calibration of repeated measurements. To contextualise findings, we systematically sought PubMed, Web of Science and EMBASE for relevant articles and pooled results using random-effects meta-analysis. Over 15 years of follow-up, 44 out of 606 participants free of diabetes at baseline developed incident T2DM. The adjusted hazard ratio for T2DM comparing the bottom vs. the top quartile of baseline RTL (i.e. shortest vs. longest) was 2.00 (95% confidence interval: 0.90 to 4.49; P = 0.091), and 2.31 comparing the bottom quartile vs. the remainder (1.21 to 4.41; P = 0.011). The corresponding hazard ratios corrected for within-person RTL variability were 3.22 (1.27 to 8.14; P = 0.014) and 2.86 (1.45 to 5.65; P = 0.003). In a random-effects meta-analysis of three prospective cohort studies involving 6,991 participants and 2,011 incident T2DM events, the pooled relative risk was 1.31 (1.07 to 1.60; P = 0.010; I2 = 69%). Low RTL is independently associated with the risk of incident T2DM. To avoid regression dilution biases in observed associations of RTL with disease risk, future studies should implement methods correcting for within-person variability in RTL. The causal role of short telomeres in T2DM development remains to be determined.
Adaptive immunity in atherogenesis: new insights and therapeutic approaches
Many remarkable advances have improved our understanding of the cellular and molecular events in the pathogenesis of atherosclerosis. Chief among these is the accumulating knowledge of how the immune system contributes to all phases of atherogenesis, including well-known inflammatory reactions consequent to intimal trapping and oxidation of LDL. Advances in our understanding of the innate and adaptive responses to these events have helped to clarify the role of inflammation in atherogenesis and suggested new diagnostic modalities and novel therapeutic targets. Here we focus on recent advances in understanding how adaptive immunity affects atherogenesis.
ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors
Hypertriglyceridemia is an independent risk factor for cardiovascular disease, and plasma triglycerides (TGs) correlate strongly with plasma apolipoprotein C-III (ApoC-III) levels. Antisense oligonucleotides (ASOs) for ApoC-III reduce plasma TGs in primates and mice, but the underlying mechanism of action remains controversial. We determined that a murine-specific ApoC-III-targeting ASO reduces fasting TG levels through a mechanism that is dependent on low-density lipoprotein receptors (LDLRs) and LDLR-related protein 1 (LRP1). ApoC-III ASO treatment lowered plasma TGs in mice lacking lipoprotein lipase (LPL), hepatic heparan sulfate proteoglycan (HSPG) receptors, LDLR, or LRP1 and in animals with combined deletion of the genes encoding HSPG receptors and LDLRs or LRP1. However, the ApoC-III ASO did not lower TG levels in mice lacking both LDLR and LRP1. LDLR and LRP1 were also required for ApoC-III ASO-induced reduction of plasma TGs in mice fed a high-fat diet, in postprandial clearance studies, and when ApoC-III-rich or ApoC-III-depleted lipoproteins were injected into mice. ASO reduction of ApoC-III had no effect on VLDL secretion, heparin-induced TG reduction, or uptake of lipids into heart and skeletal muscle. Our data indicate that ApoC-III inhibits turnover of TG-rich lipoproteins primarily through a hepatic clearance mechanism mediated by the LDLR/LRP1 axis.
Complement factor H binds malondialdehyde epitopes and protects from oxidative stress
Oxidative stress and enhanced lipid peroxidation are linked to many chronic inflammatory diseases, including age-related macular degeneration (AMD). AMD is the leading cause of blindness in Western societies, but its aetiology remains largely unknown. Malondialdehyde (MDA) is a common lipid peroxidation product that accumulates in many pathophysiological processes, including AMD. Here we identify complement factor H (CFH) as a major MDA-binding protein that can block both the uptake of MDA-modified proteins by macrophages and MDA-induced proinflammatory effects in vivo in mice. The CFH polymorphism H402, which is strongly associated with AMD, markedly reduces the ability of CFH to bind MDA, indicating a causal link to disease aetiology. Our findings provide important mechanistic insights into innate immune responses to oxidative stress, which may be exploited in the prevention of and therapy for AMD and other chronic inflammatory diseases. Causes of age-related macular degeneration Age-related macular degeneration (AMD) is a leading cause of blindness in older people. A polymorphism in complement factor H (CFH) has been strongly associated with the disease, but the mechanism of the association has been unclear. Here it is shown that CFH binds specifically to the lipid peroxidation product, malondialdehyde, which builds up in AMD as a result of oxidative stress. Malondialdehyde and malondialdehyde-modified proteins induce inflammatory responses; CFH neutralizes this inflammatory potential both in vitro and in the mouse retina. A common CFH polymorphism associated with AMD leads to impaired binding to malondialdehyde, potentially explaining why homozygous individuals with this polymorphism have a 6–7-fold increased risk of developing the condition.