Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Wloka, Carsten"
Sort by:
Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores
by
Huang, Gang
,
Willems, Kherim
,
Soskine, Misha
in
631/1647/350/1058
,
631/61/350/59
,
Amino acids
2017
Biological nanopores are nanoscale sensors employed for high-throughput, low-cost, and long read-length DNA sequencing applications. The analysis and sequencing of proteins, however, is complicated by their folded structure and non-uniform charge. Here we show that an electro-osmotic flow through Fragaceatoxin C (FraC) nanopores can be engineered to allow the entry of polypeptides at a fixed potential regardless of the charge composition of the polypeptide. We further use the nanopore currents to discriminate peptide and protein biomarkers from 25 kDa down to 1.2 kDa including polypeptides differing by one amino acid. On the road to nanopore proteomics, our findings represent a rationale for amino-acid analysis of folded and unfolded polypeptides with nanopores.
Biological nanopore–based protein sequencing and recognition is challenging due to the folded structure or non-uniform charge of peptides. Here the authors show that engineered FraC nanopores can overcome these problems and recognize biomarkers in the form of oligopeptides, polypeptides and folded proteins.
Journal Article
Single-molecule nanopore enzymology
by
Willems, Kherim
,
Van Meervelt, Veerle
,
Maglia, Giovanni
in
Biological membranes
,
Biosensing Techniques
,
Chemical reactions
2017
Biological nanopores are a class of membrane proteins that open nanoscale water conduits in biological membranes. When they are reconstituted in artificial membranes and a bias voltage is applied across the membrane, the ionic current passing through individual nanopores can be used to monitor chemical reactions, to recognize individual molecules and, of most interest, to sequence DNA. In addition, a more recent nanopore application is the analysis of single proteins and enzymes. Monitoring enzymatic reactions with nanopores, i.e. nanopore enzymology, has the unique advantage that it allows long-timescale observations of native proteins at the single-molecule level. Here, we describe the approaches and challenges in nanopore enzymology.
This article is part of the themed issue ‘Membrane pores: from structure and assembly, to medicine and technology’.
Journal Article
Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores
by
Soskine, Misha
,
Hermans, Jos
,
Galenkamp, Nicole Stéphanie
in
631/57/2265
,
631/61/350/1058
,
631/61/350/59
2018
Crucial steps in the miniaturisation of biosensors are the conversion of a biological signal into an electrical current as well as the direct sampling of bodily fluids. Here we show that protein sensors in combination with a nanopore, acting as an electrical transducer, can accurately quantify metabolites in real time directly from nanoliter amounts of blood and other bodily fluids. Incorporation of the nanopore into portable electronic devices will allow developing sensitive, continuous, and non-invasive sensors for metabolites for point-of-care and home diagnostics.
Protein nanopores are emerging as sensors for a variety of biomolecules. Here the authors develop a nanopore based on the bacterial toxin ClyA, in conjunction with binding proteins for glucose and asparagine, to detect these biomolecules simultaneously from a variety of unprocessed, diluted body fluids.
Journal Article
Architecture and dynamic remodelling of the septin cytoskeleton during the cell cycle
2014
Septins perform diverse functions through the formation of filaments and higher-order structures. However, the exact architecture of septin structures remains unclear. In the budding yeast
Saccharomyces cerevisiae
, septins form an ‘hourglass’ at the mother-bud neck before cytokinesis, which is converted into a ‘double ring’ during cytokinesis. Here, using platinum-replica electron microscopy, we find that the early hourglass consists of septin double filaments oriented along the mother-bud axis. In the late hourglass, these double filaments are connected by periodic circumferential single filaments on the membrane-proximal side and are associated with centrally located, circumferential, myosin-II thick filaments on the membrane-distal side. The double ring consists of exclusively circumferential septin filaments. Live-cell imaging studies indicate that the hourglass-to-double ring transition is accompanied by loss of septin subunits from the hourglass and reorganization of the remaining subunits into the double ring. This work provides an unparalleled view of septin structures within cells and defines their remodelling dynamics during the cell cycle.
In budding yeast, septin filaments adopt an hourglass structure at the bud neck that is remodelled into a double ring. Ong
et al.
reveal in fine detail the dynamic reorganization of septin filaments within these structures through the cell cycle using platinum-replica electron microscopy.
Journal Article
Single-molecule nanopore enzymology
2017
Biological nanopores are a class of membrane proteins that open nanoscale water conduits in biological membranes. When they are reconstituted in artificial membranes and a bias voltage is applied across the membrane, the ionic current passing through individual nanopores can be used to monitor chemical reactions, to recognize individual molecules and, of most interest, to sequence DNA. In addition, a more recent nanopore application is the analysis of single proteins and enzymes. Monitoring enzymatic reactions with nanopores, i.e. nanopore enzymology, has the unique advantage that it allows long-timescale observations of native proteins at the single-molecule level. Here, we describe the approaches and challenges in nanopore enzymology. This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Journal Article