Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
59
result(s) for
"Wojtaszewski, J. F. P"
Sort by:
Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training
2021
Skeletal muscle conveys several of the health-promoting effects of exercise; yet the underlying mechanisms are not fully elucidated. Studying skeletal muscle is challenging due to its different fiber types and the presence of non-muscle cells. This can be circumvented by isolation of single muscle fibers. Here, we develop a workflow enabling proteomics analysis of pools of isolated muscle fibers from freeze-dried human muscle biopsies. We identify more than 4000 proteins in slow- and fast-twitch muscle fibers. Exercise training alters expression of 237 and 172 proteins in slow- and fast-twitch muscle fibers, respectively. Interestingly, expression levels of secreted proteins and proteins involved in transcription, mitochondrial metabolism, Ca
2+
signaling, and fat and glucose metabolism adapts to training in a fiber type-specific manner. Our data provide a resource to elucidate molecular mechanisms underlying muscle function and health, and our workflow allows fiber type-specific proteomic analyses of snap-frozen non-embedded human muscle biopsies.
Skeletal muscle conveys the beneficial effects of physical exercise but due to its heterogeneity, studying the effects of exercise on muscle fibres is challenging. Here, the authors carry out proteomic analysis of myofibres from freeze-dried muscle biopsies, show fibre-type specific changes in response to exercise, and show that the oxidative and glycolytic muscle fibers adapt differentially to exercise training.
Journal Article
Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exercise-training
by
Birk, J. B
,
Wojtaszewski, J. F. P
,
Beck-Nielsen, H
in
Biological and medical sciences
,
Blood Glucose - metabolism
,
Blotting, Western
2011
Aims/hypothesis Insulin-mediated glucose disposal rates (R d) are reduced in type 2 diabetic patients, a process in which intrinsic signalling defects are thought to be involved. Phosphorylation of TBC1 domain family, member 4 (TBC1D4) is at present the most distal insulin receptor signalling event linked to glucose transport. In this study, we examined insulin action on site-specific phosphorylation of TBC1D4 and the effect of exercise training on insulin action and signalling to TBC1D4 in skeletal muscle from type 2 diabetic patients. Methods During a 3 h euglycaemic-hyperinsulinaemic (80 mU min⁻¹ m⁻²) clamp, we obtained M. vastus lateralis biopsies from 13 obese type 2 diabetic and 13 obese, non-diabetic control individuals before and after 10 weeks of endurance exercise-training. Results Before training, reductions in insulin-stimulated R d, together with impaired insulin-stimulated glycogen synthase fractional velocity, Akt Thr³⁰⁸ phosphorylation and phosphorylation of TBC1D4 at Ser³¹⁸, Ser⁵⁸⁸ and Ser⁷⁵¹ were observed in skeletal muscle from diabetic patients. Interestingly, exercise-training normalised insulin-induced TBC1D4 phosphorylation in diabetic patients. This happened independently of increased TBC1D4 protein content, but exercise-training did not normalise Akt phosphorylation in diabetic patients. In both groups, training-induced improvements in insulin-stimulated R d (~20%) were associated with increased muscle protein content of Akt, TBC1D4, α2-AMP-activated kinase (AMPK), glycogen synthase, hexokinase II and GLUT4 (20-75%). Conclusions/interpretation Impaired insulin-induced site-specific TBC1D4 phosphorylation may contribute to skeletal muscle insulin resistance in type 2 diabetes. The mechanisms by which exercise-training improves insulin sensitivity in type 2 diabetes may involve augmented signalling of TBC1D4 and increased skeletal muscle content of key insulin signalling and effector proteins, e.g., Akt, TBC1D4, AMPK, glycogen synthase, GLUT4 and hexokinase II.
Journal Article
Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle
by
Kiens, B
,
Wojtaszewski, J. F. P
,
Maarbjerg, S. J
in
Adipose Tissue - cytology
,
Adipose Tissue - physiology
,
Adult
2009
Aims/hypothesis TBC1 domain family, member 4 (TBC1D4; also known as AS160) is a cellular signalling intermediate to glucose transport regulated by insulin-dependent and -independent mechanisms. Skeletal muscle insulin sensitivity is increased after acute exercise by an unknown mechanism that does not involve modulation at proximal insulin signalling intermediates. We hypothesised that signalling through TBC1D4 is involved in this effect of exercise as it is a common signalling element for insulin and exercise. Methods Insulin-regulated glucose metabolism was evaluated in 12 healthy moderately trained young men 4 h after one-legged exercise at basal and during a euglycaemic-hyperinsulinaemic clamp. Vastus lateralis biopsies were taken before and immediately after the clamp. Results Insulin stimulation increased glucose uptake in both legs, with greater effects (~80%, p < 0.01) in the previously exercised leg. TBC1D4 phosphorylation, assessed using the phospho-AKT (protein kinase B)substrate antibody and phospho- and site-specific antibodies targeting six phosphorylation sites on TBC1D4, increased at similar degrees to insulin stimulation in the previously exercised and rested legs (p < 0.01). However, TBC1D4 phosphorylation on Ser-318, Ser-341, Ser-588 and Ser-751 was higher in the previously exercised leg, both in the absence and in the presence of insulin (p < 0.01; Ser-588, p = 0.09; observed power = 0.39). 14-3-3 binding capacity for TBC1D4 increased equally (p < 0.01) in both legs during insulin stimulation. Conclusion/interpretation We provide evidence for site-specific phosphorylation of TBC1D4 in human skeletal muscle in response to physiological hyperinsulinaemia. The data support the idea that TBC1D4 is a nexus for insulin- and exercise-responsive signals that may mediate increased insulin action after exercise.
Journal Article
Author Correction: Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training
2021
A Correction to this paper has been published: https://doi.org/10.1038/s41467-021-22015-4
Journal Article
Hyperglycaemia normalises insulin action on glucose metabolism but not the impaired activation of AKT and glycogen synthase in the skeletal muscle of patients with type 2 diabetes
by
Højlund, K.
,
Wojtaszewski, J. F. P.
,
Vienberg, S. G.
in
Biological and medical sciences
,
Biopsy
,
Diabetes
2012
Aims/hypothesis
In type 2 diabetes, reduced insulin-stimulated glucose disposal, primarily glycogen synthesis, is associated with defective insulin activation of glycogen synthase (GS) in skeletal muscle. Hyperglycaemia may compensate for these defects, but to what extent it involves improved insulin signalling to glycogen synthesis remains to be clarified.
Methods
Whole-body glucose metabolism was studied in 12 patients with type 2 diabetes, and 10 lean and 10 obese non-diabetic controls by means of indirect calorimetry and tracers during a euglycaemic-hyperinsulinaemic clamp. The diabetic patients underwent a second isoglycaemic-hyperinsulinaemic clamp maintaining fasting hyperglycaemia. Muscle biopsies from m. vastus lateralis were obtained before and after the clamp for examination of GS and relevant insulin signalling components.
Results
During euglycaemia, insulin-stimulated glucose disposal, glucose oxidation and non-oxidative glucose metabolism were reduced in the diabetic group compared with both control groups (
p
< 0.05). This was associated with impaired insulin-stimulated GS and AKT2 activity, deficient dephosphorylation at GS sites 2 + 2a, and reduced Thr308 and Ser473 phosphorylation of AKT. When studied under hyperglycaemia, all variables of insulin-stimulated glucose metabolism were normalised compared with the weight-matched controls. However, insulin activation and dephosphorylation (site 2 + 2a) of GS as well as activation of AKT2 and phosphorylation at Thr308 and Ser473 remained impaired (
p
< 0.05).
Conclusions/interpretations
These data confirm that hyperglycaemia compensates for decreased whole-body glucose disposal in type 2 diabetes. In contrast to previous less well-controlled studies, we provide evidence that the compensatory effect of hyperglycaemia in patients with type 2 diabetes does not involve normalisation of insulin action on GS or upstream signalling in skeletal muscle.
Journal Article
Differential aetiology and impact of phosphoinositide 3-kinase (PI3K) and Akt signalling in skeletal muscle on in vivo insulin action
2010
Aims/hypothesis Insulin resistance in skeletal muscle is a key factor in the development of type 2 diabetes and although some studies indicate that this could be partly attributed to reduced content and activity of various proximal and distal insulin signalling molecules, consensus is lacking. We therefore aimed to investigate the regulation of proximal insulin signalling in skeletal muscle and its effect on glucose metabolism in a large non-diabetic population. Methods We examined 184 non-diabetic twins with gold-standard techniques including the euglycaemic-hyperinsulinaemic clamp. Insulin signalling was evaluated at three key levels, i.e. the insulin receptor, IRS-1 and V-akt murine thymoma viral oncogene (Akt) levels, employing kinase assays and phospho-specific western blotting. Results Proximal insulin signalling was not associated with obesity, age or sex. However, birthweight was positively associated with IRS-1-associated phosphoinositide 3-kinase (PI3K; IRS-1-PI3K) activity (p = 0.04); maximal aerobic capacity [graphic removed] , paradoxically, was negatively associated with IRS-1-PI3K (p = 0.02) and Akt2 activity (p = 0.01). Additionally, we found low heritability estimates for most measures of insulin signalling activity. Glucose disposal was positively associated with Akt-308 phosphorylation (p < 0.001) and Akt2 activity (p = 0.05), but not with insulin receptor tyrosine kinase or IRS-1-PI3K activity. Conclusions/interpretation With the exception of birthweight, ‘classical' modifiers of insulin action, including genetics, age, sex, obesity and [graphic removed] , do not seem to mediate their most central effects on whole-body insulin sensitivity through modulation of proximal insulin signalling in skeletal muscle. We also demonstrated an association between Akt activity and in vivo insulin sensitivity, suggesting a role of Akt in control of in vivo insulin resistance and potentially in type 2 diabetes.
Journal Article
Reduced plasma adiponectin concentrations may contribute to impaired insulin activation of glycogen synthase in skeletal muscle of patients with type 2 diabetes
by
Højlund, K.
,
Wojtaszewski, J. F. P.
,
Frystyk, J.
in
Adiponectin - blood
,
Biological and medical sciences
,
Biopsy
2006
Circulating levels of adiponectin are negatively associated with multiple indices of insulin resistance, and the concentration is reduced in humans with insulin resistance and type 2 diabetes. However, the mechanisms by which adiponectin improves insulin sensitivity remain unclear.
Combining euglycaemic-hyperinsulinaemic clamp studies with indirect calorimetry and skeletal muscle biopsies, we examined the relationship between plasma adiponectin and parameters of whole-body glucose and lipid metabolism, and muscle glycogen synthase (GS) activity in 51 Caucasians (ten lean, 21 obese and 20 with type 2 diabetes).
Plasma adiponectin was significantly reduced in type 2 diabetic compared with obese and lean subjects. In lean and obese subjects, insulin significantly reduced plasma adiponectin, but this response was blunted in patients with type 2 diabetes. Plasma adiponectin was positively associated with insulin-stimulated glucose disposal (r = 0.48), glucose oxidation (r = 0.54), respiratory quotient (r = 0.58) and non-oxidative glucose metabolism (r = 0.38), and negatively associated with lipid oxidation during insulin stimulation (r = -0.60) after adjustment for body fat (all p < 0.01). Most notably, we found a positive association between plasma adiponectin and insulin stimulation of GS activity in skeletal muscle (r = 0.44, p < 0.01).
Our results indicate that plasma adiponectin may enhance insulin sensitivity by improving the capacity to switch from lipid to glucose oxidation and to store glucose as glycogen in response to insulin, and that low adiponectin may contribute to impaired insulin activation of GS in skeletal muscle of patients with type 2 diabetes.
Journal Article
Partial rescue of in vivo insulin signalling in skeletal muscle by impaired insulin clearance in heterozygous carriers of a mutation in the insulin receptor gene
by
Højlund, K.
,
Hansen, B. F.
,
Wojtaszewski, J. F. P.
in
Adult
,
Amino Acid Substitution
,
Arginine
2006
Recently we reported the coexistence of postprandial hypoglycaemia and moderate insulin resistance in heterozygous carriers of the Arg1174Gln mutation in the insulin receptor gene (INSR). Controlled studies of in vivo insulin signalling in humans with mutant INSR are unavailable, and therefore the cellular mechanisms underlying insulin resistance in Arg1174Gln carriers remain to be clarified.
We studied glucose metabolism and insulin signalling in skeletal muscle from six Arg1174Gln carriers and matched control subjects during a euglycaemic-hyperinsulinaemic clamp.
Impaired clearance of exogenous insulin caused four-fold higher clamp insulin levels in Arg1174Gln carriers compared with control subjects (p<0.05). In Arg1174Gln carriers insulin increased glucose disposal and non-oxidative glucose metabolism (p<0.05), but to a lower extent than in controls (p<0.05). Insulin increased Akt phosphorylation at Ser473 and Thr308, inhibited glycogen synthase kinase-3alpha activity, reduced phosphorylation of glycogen synthase at sites 3a+3b, and increased glycogen synthase activity in Arg1174Gln carriers (all p<0.05). In the insulin-stimulated state, Akt phosphorylation at Thr308 and glycogen synthase activity were reduced in Arg1174Gln carriers compared with controls (p<0.05), whereas glycogen synthase kinase-3alpha activity and phosphorylation of glycogen synthase at sites 3a+3b were similar in the two groups.
In vivo insulin signalling in skeletal muscle of patients harbouring the Arg1174Gln mutation is surprisingly intact, with modest impairments in insulin-stimulated activity of Akt and glycogen synthase explaining the moderate degree of insulin resistance. Our data suggest that impaired insulin clearance in part rescues in vivo insulin signalling in muscle in these carriers of a mutant INSR, probably by increasing insulin action on the non-mutated insulin receptors.
Journal Article
Role of 5′AMP-activated protein kinase in skeletal muscle
2008
5′AMP-activated protein kinase (AMPK) is recognized as an important intracellular energy sensor, shutting down energy-consuming processes and turning on energy-generating processes. Discovery of target proteins of AMPK has dramatically increased in the past 10 years. Historically, AMPK was first shown to regulate fatty acid and cholesterol synthesis, but is now hypothesized to take part in the regulation of energy/fuel balance not only at the cellular level but also at the level of the whole organism. In this brief review we will discuss some of the roles of AMPK in skeletal muscle.
Journal Article
Insulin Signaling in Human Skeletal Muscle: Time Course and Effect of Exercise
by
Hansen, Bo F
,
Richter, Erik A
,
Kiens, Bente
in
Adult
,
Biological and medical sciences
,
Biological transport
1997
Activation of early steps in the insulin signaling cascade in human skeletal muscle was investigated using a one-step euglycemic-hyperinsulinemic (∼100 μU/ml) clamp in seven healthy young men 3 h after one-legged exercise. Concomitant insulin stimulation (three- to six-fold [P < 0.05]) of thigh glucose clearance, muscle insulin receptor tyrosine kinase (IRTK), insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, and IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) was observed in the rested leg. Twenty minutes after cessation of insulin infusion, the level of these parameters returned toward basal. A twofold higher insulin-stimulated glucose clearance in the exercised compared with the rested thigh was accompanied by unaltered maximal IRTK activation and IRS-1 tyrosine phosphorylation, and by a decreased (∼50%, P < 0.05) maximal IRS-1 associated PI 3-kinase activation. Prior exercise caused significantly faster insulin-stimulated tyrosine phosphorylation of IRS-1, PI 3-kinase activity, and glucose clearance compared with those in the rested thigh. In conclusion, physiological hyperin-sulinemia activates IRTK, IRS-1 tyrosine phosphorylation, and PI 3-kinase in human skeletal muscle. However, increased insulin action after exercise is not caused by potentiation of these steps in the insulin signaling cascade. In contrast, at steady state, paradoxically decreased insulin-stimulated IRS-1-associated PI 3-kinase activity was observed in exercised muscle. Thus, the activity of IRS-1-associated PI 3-kinase and glucose uptake may not always be tightly coupled during insulin stimulation in human muscle.
Journal Article