Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,062 result(s) for "Wong, Ashley S. A."
Sort by:
Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency
An increasing number of women fail to achieve pregnancy due to either failed fertilization or embryo arrest during preimplantation development. This often results from decreased oocyte quality. Indeed, reduced mitochondrial DNA copy number (mitochondrial DNA deficiency) may disrupt oocyte quality in some women. To overcome mitochondrial DNA deficiency, whilst maintaining genetic identity, we supplemented pig oocytes selected for mitochondrial DNA deficiency, reduced cytoplasmic maturation and lower developmental competence, with autologous populations of mitochondrial isolate at fertilization. Supplementation increased development to blastocyst, the final stage of preimplantation development, and promoted mitochondrial DNA replication prior to embryonic genome activation in mitochondrial DNA deficient oocytes but not in oocytes with normal levels of mitochondrial DNA. Blastocysts exhibited transcriptome profiles more closely resembling those of blastocysts from developmentally competent oocytes. Furthermore, mitochondrial supplementation reduced gene expression patterns associated with metabolic disorders that were identified in blastocysts from mitochondrial DNA deficient oocytes. These results demonstrate the importance of the oocyte’s mitochondrial DNA investment in fertilization outcome and subsequent embryo development to mitochondrial DNA deficient oocytes.
N-dihydrogalactochitosan reduces mortality in a lethal mouse model of SARS-CoV-2
The rapid emergence and global dissemination of SARS-CoV-2 that causes COVID-19 continues to cause an unprecedented global health burden resulting in nearly 7 million deaths. While multiple vaccine countermeasures have been approved for emergency use, additional treatments are still needed due to sluggish vaccine rollout, vaccine hesitancy, and inefficient vaccine-mediated protection. Immunoadjuvant compounds delivered intranasally can guide non-specific innate immune responses during the critical early stages of viral replication, reducing morbidity and mortality. N-dihydro g alacto c hitosan (GC) is a novel mucoadhesive immunostimulatory polymer of β-0-4-linked N-acetylglucosamine that is solubilized by the conjugation of galactose glycans with current applications as a cancer immunotherapeutic. We tested GC as a potential countermeasure for COVID-19. GC was well-tolerated and did not produce histopathologic lesions in the mouse lung. GC administered intranasally before and after SARS-CoV-2 exposure diminished morbidity and mortality in humanized ACE2 receptor expressing mice by up to 75% and reduced infectious virus levels in the upper airway. Fluorescent labeling of GC shows that it is confined to the lumen or superficial mucosa of the nasal cavity, without involvement of adjacent or deeper tissues. Our findings demonstrate a new application for soluble immunoadjuvants such as GC for preventing disease associated with SARS-CoV-2 and may be particularly attractive to persons who are needle-averse.
Selective inhibitors of JAK1 targeting an isoform-restricted allosteric cysteine
The Janus tyrosine kinase (JAK) family of non-receptor tyrosine kinases includes four isoforms (JAK1, JAK2, JAK3, and TYK2) and is responsible for signal transduction downstream of diverse cytokine receptors. JAK inhibitors have emerged as important therapies for immun(onc)ological disorders, but their use is limited by undesirable side effects presumed to arise from poor isoform selectivity, a common challenge for inhibitors targeting the ATP-binding pocket of kinases. Here we describe the chemical proteomic discovery of a druggable allosteric cysteine present in the non-catalytic pseudokinase domain of JAK1 (C817) and TYK2 (C838), but absent from JAK2 or JAK3. Electrophilic compounds selectively engaging this site block JAK1-dependent trans-phosphorylation and cytokine signaling, while appearing to act largely as ‘silent’ ligands for TYK2. Importantly, the allosteric JAK1 inhibitors do not impair JAK2-dependent cytokine signaling and are inactive in cells expressing a C817A JAK1 mutant. Our findings thus reveal an allosteric approach for inhibiting JAK1 with unprecedented isoform selectivity.Chemical proteomics identified covalent ligands targeting an isoform-restricted allosteric cysteine in JAK1. The compounds inhibit JAK1-dependent signaling in immune cells with unprecedented selectivity.
β-Amyloid Precursor Protein Does Not Possess Ferroxidase Activity but Does Stabilize the Cell Surface Ferrous Iron Exporter Ferroportin
Ceruloplasmin is a ferroxidase that interacts with ferroportin to export cellular iron, but is not expressed in neurons. We recently reported that the amyloid precursor protein (APP) is the analogous iron-exporting chaperone for neurons and other cells. The ferroxidase activity of APP has since been called into question. Using a triplex Fe2+ oxidation assay, we analyzed the activity of a soluble form of APP (sAPPα) within a buffer of physiological pH and anionic charge, and determined that iron oxidation originated from phosphate. Using various techniques such as flow-cytometry to measure surface presented proteins, we confirmed that endogenous APP is essential for ferroportin persistence on the neuronal surface. Therefore, despite lacking ferroxidase activity, APP still supports iron export from neurons.
Spatial multiomics map of trophoblast development in early pregnancy
The relationship between the human placenta—the extraembryonic organ made by the fetus, and the decidua—the mucosal layer of the uterus, is essential to nurture and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) derived from placental villi infiltrate the decidua, transforming the maternal arteries into high-conductance vessels 1 . Defects in trophoblast invasion and arterial transformation established during early pregnancy underlie common pregnancy disorders such as pre-eclampsia 2 . Here we have generated a spatially resolved multiomics single-cell atlas of the entire human maternal–fetal interface including the myometrium, which enables us to resolve the full trajectory of trophoblast differentiation. We have used this cellular map to infer the possible transcription factors mediating EVT invasion and show that they are preserved in in vitro models of EVT differentiation from primary trophoblast organoids 3 , 4 and trophoblast stem cells 5 . We define the transcriptomes of the final cell states of trophoblast invasion: placental bed giant cells (fused multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal arteries). We predict the cell–cell communication events contributing to trophoblast invasion and placental bed giant cell formation, and model the dual role of interstitial EVTs and endovascular EVTs in mediating arterial transformation during early pregnancy. Together, our data provide a comprehensive analysis of postimplantation trophoblast differentiation that can be used to inform the design of experimental models of the human placenta in early pregnancy. A multiomics single-cell atlas of the human maternal–fetal interface including the myometrium, combining spatial transcriptomics data with chromatin accessibility, provides a comprehensive analysis of cell states as placental cells infiltrate the uterus during early pregnancy.
Amyloid-beta and tau pathologies act synergistically to induce novel disease stage-specific microglia subtypes
Background Amongst risk alleles associated with late-onset Alzheimer’s disease (AD), those that converged on the regulation of microglia activity have emerged as central to disease progression. Yet, how canonical amyloid-β (Aβ) and tau pathologies regulate microglia subtypes during the progression of AD remains poorly understood. Methods We use single-cell RNA-sequencing to profile microglia subtypes from mice exhibiting both Aβ and tau pathologies across disease progression. We identify novel microglia subtypes that are induced in response to both Aβ and tau pathologies in a disease-stage-specific manner. To validate the observation in AD mouse models, we also generated a snRNA-Seq dataset from the human superior frontal gyrus (SFG) and entorhinal cortex (ERC) at different Braak stages. Results We show that during early-stage disease, interferon signaling induces a subtype of microglia termed Early-stage AD-Associated Microglia (EADAM) in response to both Aβ and tau pathologies. During late-stage disease, a second microglia subtype termed Late-stage AD-Associated Microglia (LADAM) is detected. While similar microglia subtypes are observed in other models of neurodegenerative disease, the magnitude and composition of gene signatures found in EADAM and LADAM are distinct, suggesting the necessity of both Aβ and tau pathologies to elicit their emergence. Importantly, the pattern of EADAM- and LADAM-associated gene expression is observed in microglia from AD brains, during the early (Braak II)- or late (Braak VI/V)- stage of the disease, respectively. Furthermore, we show that several Siglec genes are selectively expressed in either EADAM or LADAM. Siglecg is expressed in white-matter-associated LADAM, and expression of Siglec - 10 , the human orthologue of Siglecg, is progressively elevated in an AD-stage-dependent manner but not shown in non-AD tauopathy. Conclusions Using scRNA-Seq in mouse models bearing amyloid-β and/or tau pathologies, we identify novel microglia subtypes induced by the combination of Aβ and tau pathologies in a disease stage-specific manner. Our findings suggest that both Aβ and tau pathologies are required for the disease stage-specific induction of EADAM and LADAM. In addition, we revealed Siglecs as biomarkers of AD progression and potential therapeutic targets.
Dengue virus infection modifies mosquito blood-feeding behavior to increase transmission to the host
Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquitoborne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of Aedes aegypti mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue.
A Scoping Review of Professional Identity Formation in Undergraduate Medical Education
BackgroundProfessional identity formation (PIF) in medical students is a multifactorial phenomenon, shaped by ways that clinical and non-clinical experiences, expectations and environmental factors merge with individual values, beliefs and obligations. The relationship between students’ evolving professional identity and self-identity or personhood remains ill-defined, making it challenging for medical schools to support PIF systematically and strategically. Primarily, to capture prevailing literature on PIF in medical school education, and secondarily, to ascertain how PIF influences on medical students may be viewed through the lens of the ring theory of personhood (RToP) and to identify ways that medical schools support PIF.MethodsA systematic scoping review was conducted using the systematic evidence-based approach. Articles published between 1 January 2000 and 1 July 2020 related to PIF in medical students were searched using PubMed, Embase, PsycINFO, ERIC and Scopus. Articles of all study designs (quantitative and qualitative), published or translated into English, were included. Concurrent thematic and directed content analyses were used to evaluate the data.ResultsA total of 10443 abstracts were identified, 272 full-text articles evaluated, and 76 articles included. Thematic and directed content analyses revealed similar themes and categories as follows: characteristics of PIF in relation to professionalism, role of socialization in PIF, PIF enablers and barriers, and medical school approaches to supporting PIF.DiscussionPIF involves iterative construction, deconstruction and inculcation of professional beliefs, values and behaviours into a pre-existent identity. Through the lens of RToP, factors were elucidated that promote or hinder students’ identity development on individual, relational or societal levels. If inadequately or inappropriately supported, enabling factors become barriers to PIF. Medical schools employ an all-encompassing approach to support PIF, illuminating the need for distinct and deliberate longitudinal monitoring and mentoring to foster students’ balanced integration of personal and professional identities over time.
Long-term dietary nitrate supplementation does not reduce renal cyst growth in experimental autosomal dominant polycystic kidney disease
Augmentation of endogenous nitric oxide (NO) synthesis, either by the classical L-arginine-NO synthase pathway, or the recently discovered entero-salivary nitrate-nitrite-NO system, may slow the progression of autosomal dominant polycystic kidney disease (ADPKD). To test this hypothesis, the expression of NO in human ADPKD cell lines (WT 9–7, WT 9–12), and the effect of L-arginine on an in vitro model of three-dimensional cyst growth using MDCK cells, was examined. In addition, groups of homozygous Pkd1 RC/RC mice (a hypomorphic genetic ortholog of ADPKD) received either low, moderate or high dose sodium nitrate (0.1, 1 or 10 mmol/kg/day), or sodium chloride (vehicle; 10 mmol/kg/day), supplemented drinking water from postnatal month 1 to 9 (n = 12 per group). In vitro , intracellular NO, as assessed by DAF-2/DA fluorescence, was reduced by >70% in human ADPKD cell lines, and L-arginine and the NO donor, sodium nitroprusside, both attenuated in vitro cyst growth by up to 18%. In contrast, in Pkd1 RC/RC mice, sodium nitrate supplementation increased serum nitrate/nitrite levels by ~25-fold in the high dose group (P<0.001), but kidney enlargement and percentage cyst area was not altered, regardless of dose. In conclusion, L-arginine has mild direct efficacy on reducing renal cyst growth in vitro , whereas long-term sodium nitrate supplementation was ineffective in vivo . These data suggest that the bioconversion of dietary nitrate to NO by the entero-salivary pathway may not be sufficient to influence the progression of renal cyst growth in ADPKD.
Hierarchical assembly of tryptophan zipper peptides into stress-relaxing bioactive hydrogels
Soft materials in nature are formed through reversible supramolecular assembly of biological polymers into dynamic hierarchical networks. Rational design has led to self-assembling peptides with structural similarities to natural materials. However, recreating the dynamic functional properties inherent to natural systems remains challenging. Here we report the discovery of a short peptide based on the tryptophan zipper (trpzip) motif, that shows multiscale hierarchical ordering that leads to emergent dynamic properties. Trpzip hydrogels are antimicrobial and self-healing, with tunable viscoelasticity and unique yield-stress properties that allow immediate harvest of embedded cells through a flick of the wrist. This characteristic makes Trpzip hydrogels amenable to syringe extrusion, which we demonstrate with examples of cell delivery and bioprinting. Trpzip hydrogels display innate bioactivity, allowing propagation of human intestinal organoids with apical-basal polarization. Considering these extensive attributes, we anticipate the Trpzip motif will prove a versatile building block for supramolecular assembly of soft materials for biotechnology and medicine. Rational design has endowed self-assembling peptides with structural similarities to natural materials, but recreating the dynamic functional properties inherent to natural systems remains challenging. Here the authors report the discovery of a short peptide based on the tryptophan zipper motif, that shows multiscale hierarchical ordering into hydrogels that display emergent dynamic properties.