Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
115 result(s) for "Wood, Jamie R."
Sort by:
Ancient plant DNA in lake sediments
Recent advances in sequencing technologies now permit the analyses of plant DNA from fossil samples (ancient plant DNA, plant aDNA), and thus enable the molecular reconstruction of palaeofloras.Hitherto, ancient frozen soils have proved excellent in preservingDNAmolecules, and have thus been the most commonly used source of plant aDNA. However, DNA from soil mainly represents taxa growing a fewmetres fromthe sampling point. Lakes have larger catchment areas and recent studies have suggested that plant aDNAfromlake sediments is a more powerful tool for palaeofloristic reconstruction. Furthermore, lakes can be found globally in nearly all environments, and are therefore not limited to perennially frozen areas. Here,we review the latest approaches and methods for the study of plant aDNA from lake sediments and discuss the progressmade up to the present.Weargue that aDNAanalyses add newand additional perspectives for the study of ancient plant populations and, in time, will provide higher taxonomic resolution and more precise estimation of abundance. Despite this, key questions and challenges remain for such plant aDNA studies. Finally, we provide guidelines on technical issues, including lake selection, and we suggest directions for future research on plant aDNA studies in lake sediments.
Island extinctions: processes, patterns, and potential for ecosystem restoration
Extinctions have altered island ecosystems throughout the late Quaternary. Here, we review the main historic drivers of extinctions on islands, patterns in extinction chronologies between islands, and the potential for restoring ecosystems through reintroducing extirpated species. While some extinctions have been caused by climatic and environmental change, most have been caused by anthropogenic impacts. We propose a general model to describe patterns in these anthropogenic island extinctions. Hunting, habitat loss and the introduction of invasive predators accompanied prehistoric settlement and caused declines of endemic island species. Later settlement by European colonists brought further land development, a different suite of predators and new drivers, leading to more extinctions. Extinctions alter ecological networks, causing ripple effects for islands through the loss of ecosystem processes, functions and interactions between species. Reintroduction of extirpated species can help restore ecosystem function and processes, and can be guided by palaeoecology. However, reintroduction projects must also consider the cultural, social and economic needs of humans now inhabiting the islands and ensure resilience against future environmental and climate change.
A High-Resolution Chronology of Rapid Forest Transitions following Polynesian Arrival in New Zealand
Human-caused forest transitions are documented worldwide, especially during periods when land use by dense agriculturally-based populations intensified. However, the rate at which prehistoric human activities led to permanent deforestation is poorly resolved. In the South Island, New Zealand, the arrival of Polynesians c. 750 years ago resulted in dramatic forest loss and conversion of nearly half of native forests to open vegetation. This transformation, termed the Initial Burning Period, is documented in pollen and charcoal records, but its speed has been poorly constrained. High-resolution chronologies developed with a series of AMS radiocarbon dates from two lake sediment cores suggest the shift from forest to shrubland occurred within decades rather than centuries at drier sites. We examine two sites representing extreme examples of the magnitude of human impacts: a drier site that was inherently more vulnerable to human-set fires and a wetter, less burnable site. The astonishing rate of deforestation at the hands of small transient populations resulted from the intrinsic vulnerability of the native flora to fire and from positive feedbacks in post-fire vegetation recovery that increased landscape flammability. Spatially targeting burning in highly-flammable seral vegetation in forests rarely experiencing fire was sufficient to create an alternate fire-prone stable state. The New Zealand example illustrates how seemingly stable forest ecosystems can experience rapid and permanent conversions. Forest loss in New Zealand is among the fastest ecological transitions documented in the Holocene; yet equally rapid transitions can be expected in present-day regions wherever positive feedbacks support alternate fire-inhibiting, fire-prone stable states.
Comparing the effects of asynchronous herbivores on New Zealand montane vegetation communities
Large herbivores facilitate a range of important ecological processes yet globally have experienced high rates of decline and extinction over the past 50,000 years. To some extent this lost function may be replaced through the introduction of ecological surrogate taxa, either by active management or via historic introductions. However, comparing the ecological effects of herbivores that existed in the same location, but at different times, can be a challenging proposition. Here we provide an example from New Zealand that demonstrates an approach for making such comparisons. In New Zealand it has been suggested that post-19th Century mammal introductions (e.g. deer and hare) may have filled ecological niches left vacant after the 15th Century AD extinction of large avian herbivores (moa). We quantified pollen assemblages from fecal samples deposited by these two asynchronous herbivore communities to see whether they were comparable. The fecal samples were collected at the same location, and in a native-dominated vegetation community that has experience little anthropogenic disturbance and their contents reflect both the local habitat and diet preferences of the depositing herbivore. The results reveal that the current forest understory is relatively sparse and species depauperate compared to the prehistoric state, indicating that deer and moa had quite different impacts on the local vegetation community. The study provides an example of how combining coprolite and fecal analyses of prehistoric and modern herbivores may clarify the degree of ecological overlap between asynchronous herbivore communities and provide insights into the extent of ecological surrogacy provided by introduced taxa.
High-Resolution Coproecology: Using Coprolites to Reconstruct the Habits and Habitats of New Zealand’s Extinct Upland Moa (Megalapteryx didinus)
Contributes to the knowledge of moa diet and ecology by reporting the results of a multidisciplinary study of 35 coprolites from a subalpine cave (Euphrates Cave) on the South Island of New Zealand. Identifies at least 67 plant taxa from the coprolites, including the first evidence that moa fed on the nectar-rich flowers of New Zealand flax (Phormium) and tree fuchsia (Fuchsia excorticata). Source: National Library of New Zealand Te Puna Matauranga o Aotearoa, licensed by the Department of Internal Affairs for re-use under the Creative Commons Attribution 3.0 New Zealand Licence.
Sedimentary DNA insights into Holocene Adélie penguin (Pygoscelis adeliae) populations and ecology in the Ross Sea, Antarctica
We report 156 sediment metagenomes from Adélie penguin ( Pygoscelis adeliae ) colonies dating back 6000 years along the Ross Sea coast, Antarctica, and identify marine and terrestrial eukaryotes, including locally occurring bird and seal species. The data reveal spatiotemporal patterns of Adélie penguin diet, including spatial patterns in consumption of cnidarians, a historically overlooked component of Adélie penguin diets. Relative proportions of Adélie penguin mitochondrial lineages detected at each colony are comparable to those previously reported from bones. Elevated levels of Adélie penguin mitochondrial nucleotide diversity in upper stratigraphic samples of several active colonies are consistent with recent population growth. Moreover, the highest levels of Adélie penguin mitochondrial nucleotide diversity recovered from surface sediment layers are from the two largest colonies, indicating that seda DNA could provide estimates for the former size of abandoned colonies. Seda DNA also reveals prior occupation of the Cape Hallett Adélie penguin colony site by southern elephant seal ( Mirounga leonina ), demonstrating how terrestrial seda DNA can detect faunal turnover events in Antarctica driven by past climate or sea ice conditions. Low rates of cytosine deamination indicate exceptional seda DNA preservation within the region, suggesting there is high potential for recovering much older seda DNA records from local Pleistocene terrestrial sediments. Seda DNA can facilitate reconstruction of past species distributions. Here, the authors generate metagenomes from 156 stratigraphically-sampled sediments and use them to reconstruct the history of 10 Adélie penguin colonies, including penguin diet and diversity, spanning 6000 years.
Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific
The human colonization of Remote Oceania remains one of the great feats of exploration in history, proceeding east from Asia across the vast expanse of the Pacific Ocean. Human commensal and domesticated species were widely transported as part of this diaspora, possibly as far as South America. We sequenced mitochondrial control region DNA from 122 modern and 22 ancient chicken specimens from Polynesia and Island Southeast Asia and used these together with Bayesian modeling methods to examine the human dispersal of chickens across this area. We show that specific techniques are essential to remove contaminating modern DNA from experiments, which appear to have impacted previous studies of Pacific chickens. In contrast to previous reports, we find that all ancient specimens and a high proportion of the modern chickens possess a group of unique, closely related haplotypes found only in the Pacific. This group of haplotypes appears to represent the authentic founding mitochondrial DNA chicken lineages transported across the Pacific, and allows the early dispersal of chickens across Micronesia and Polynesia to be modeled. Importantly, chickens carrying this genetic signature persist on several Pacific islands at high frequencies, suggesting that the original Polynesian chicken lineages may still survive. No early South American chicken samples have been detected with the diagnostic Polynesian mtDNA haplotypes, arguing against reports that chickens provide evidence of Polynesian contact with pre-European South America. Two modern specimens from the Philippines carry haplotypes similar to the ancient Pacific samples, providing clues about a potential homeland for the Polynesian chicken.
Novel interactions between non‐native mammals and fungi facilitate establishment of invasive pines
The role of novel ecological interactions between mammals, fungi and plants in invaded ecosystems remains unresolved, but may play a key role in the widespread successful invasion of pines and their ectomycorrhizal fungal associates, even where mammal faunas originate from different continents to trees and fungi as in New Zealand. We examine the role of novel mammal associations in dispersal of ectomycorrhizal fungal inoculum of North American pines (Pinus contorta, Pseudotsuga menziesii), and native beech trees (Lophozonia menziesii) using faecal analyses, video monitoring and a bioassay experiment. Both European red deer (Cervus elaphus) and Australian brushtail possum (Trichosurus vulpecula) pellets contained spores and DNA from a range of native and non‐native ectomycorrhizal fungi. Faecal pellets from both animals resulted in ectomycorrhizal infection of pine seedlings with fungal genera Rhizopogon and Suillus, but not with native fungi or the invasive fungus Amanita muscaria, despite video and DNA evidence of consumption of these fungi. Native L. menziesii seedlings never developed any ectomycorrhizal infection from faecal pellet inoculation. Synthesis. Our results show that introduced mammals from Australia and Europe facilitate the co‐invasion of invasive North American trees and Northern Hemisphere fungi in New Zealand, while we find no evidence that introduced mammals benefit native trees or fungi. This novel tripartite ‘invasional meltdown’, comprising taxa from three kingdoms and three continents, highlights unforeseen consequences of global biotic homogenization.
Reconstructing colonization dynamics to establish how human activities transformed island biodiversity
Drivers and dynamics of initial human migrations across individual islands and archipelagos are poorly understood, hampering assessments of subsequent modification of island biodiversity. We developed and tested a new statistical-simulation approach for reconstructing the pattern and pace of human migration across islands at high spatiotemporal resolutions. Using Polynesian colonisation of New Zealand as an example, we show that process-explicit models, informed by archaeological records and spatiotemporal reconstructions of past climates and environments, can provide new and important insights into the patterns and mechanisms of arrival and establishment of people on islands. We find that colonisation of New Zealand required there to have been a single founding population of approximately 500 people, arriving between 1233 and 1257 AD, settling multiple areas, and expanding rapidly over both North and South Islands. These verified spatiotemporal reconstructions of colonisation dynamics provide new opportunities to explore more extensively the potential ecological impacts of human colonisation on New Zealand’s native biota and ecosystems.
Use of Pollen and Ancient DNA as Conservation Baselines for Offshore Islands in New Zealand
Islands play a key role globally in the conservation of endemic species. Many island reserves have been highly modified since human colonization, and their restoration and management usually occur without knowledge of their prehuman state. However, conservation paleoecology is increasingly being recognized as a tool that can help to inform both restoration and conservation of island reserves by providing prehuman vegetation baselines. Many of New Zealand's mammal‐free offshore islands are foci for biological diversity conservation and, like many islands in the Polynesian region, were deforested following initial human settlement. Therefore, their current restoration, replanting, and management are guided either by historic vegetation descriptions or the occurrence of species on forested islands. We analyzed pollen and ancient DNA in soil cores from an offshore island in northern New Zealand. The result was a 2000‐year record of vegetation change that began >1200 years before human settlement and spanned 550 years of human occupation and 180 years of forest succession since human occupation ceased. Between prehuman and contemporary forests there was nearly a complete species turnover including the extirpation of a dominant conifer and a palm tree. The podocarp‐dominated forests were replaced by a native but novel angiosperm‐dominated forest. There is no modern analog of the prehuman forests on any northern New Zealand island, and those islands that are forested are dominated by angiosperms which are assumed to be climax forests. The pollen and DNA evidence for conifer‐ and palm‐rich forests in the prehuman era challenge this climax forest assumption. Prehuman vegetation records can thus help to inform future restoration of degraded offshore islands by informing the likely rate and direction of successional change; helping to determine whether natural rates of succession are preferable to more costly replanting programs; and providing past species lists if restoration replanting is desired. Uso de Polen y ADN Antiguo como Líneas de Base de Conservación en Islas Litorales en Nueva Zelanda