Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Is Full-Text Available
      Is Full-Text Available
      Clear All
      Is Full-Text Available
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Subject
    • Country Of Publication
    • Publisher
    • Source
    • Language
    • Place of Publication
    • Contributors
    • Location
192 result(s) for "Wooldridge, Michael"
Sort by:
A brief history of artificial intelligence : what it is, where we are, and where we are going
\"From Oxford's leading AI researcher comes a fun and accessible tour through the history and future of one of the most cutting edge and misunderstood field in science: Artificial Intelligence The somewhat ill-defined long-term aim of AI is to build machines that are conscious, self-aware, and sentient; machines capable of the kind of intelligent autonomous action that currently only people are capable of. As an AI researcher with 25 years of experience, professor Mike Wooldridge has learned to be obsessively cautious about such claims, while still promoting an intense optimism about the future of the field. There have been genuine scientific breakthroughs that have made AI systems possible in the past decade that the founders of the field would have hailed as miraculous. Driverless cars and automated translation tools are just two examples of AI technologies that have become a practical, everyday reality in the past few years, and which will have a huge impact on our world. While the dream of conscious machines remains, Professor Wooldridge believes, a distant prospect, the floodgates for AI have opened. Wooldridge's A Brief History of Artificial Intelligence is an exciting romp through the history of this groundbreaking field--a one-stop-shop for AI's past, present, and world-changing future\"-- Provided by publisher.
Programming multi-agent systems in AgentSpeak using Jason
This text provides a detailed, practical guide to building multi-agent systems using Jason, one of the most prominent agent programming languages.
Hiding individuals and communities in a social network
The Internet and social media have fuelled enormous interest in social network analysis. New tools continue to be developed and used to analyse our personal connections, with particular emphasis on detecting communities or identifying key individuals in a social network. This raises privacy concerns that are likely to exacerbate in the future. With this in mind, we ask the question ‘Can individuals or groups actively manage their connections to evade social network analysis tools?’ By addressing this question, the general public may better protect their privacy, oppressed activist groups may better conceal their existence and security agencies may better understand how terrorists escape detection. We first study how an individual can evade ‘node centrality’ analysis while minimizing the negative impact that this may have on his or her influence. We prove that an optimal solution to this problem is difficult to compute. Despite this hardness, we demonstrate how even a simple heuristic, whereby attention is restricted to the individual’s immediate neighbourhood, can be surprisingly effective in practice; for example, it could easily disguise Mohamed Atta’s leading position within the World Trade Center terrorist network. We also study how a community can increase the likelihood of being overlooked by community-detection algorithms. We propose a measure of concealment—expressing how well a community is hidden—and use it to demonstrate the effectiveness of a simple heuristic, whereby members of the community either ‘unfriend’ certain other members or ‘befriend’ some non-members in a coordinated effort to camouflage their community. Waniek and colleagues show that individuals and communities can disguise themselves from detection online by standard social network analysis tools through simple changes to their social network connections.
Mean-payoff games with ω-regular specifications
Multi-player mean-payoff games are a natural formalism for modelling the behaviour of concurrent and multi-agent systems with self-interested players. Players in such a game traverse a graph, while attempting to maximise a (mean-)payoff function that depends on the play generated. As with all games, the equilibria that could arise may have undesirable properties. However, as system designers, we typically wish to ensure that equilibria in such systems correspond to desirable system behaviours, for example, satisfying certain safety or liveness properties. One natural way to do this would be to specify such desirable properties using temporal logic. Unfortunately, the use of temporal logic specifications causes game theoretic verification problems to have very high computational complexity. To address this issue, we consider ω-regular specifications. These offer a concise and intuitive way of specifying system behaviours with a comparatively low computational overhead. The main results of this work are characterisation and complexity bounds for the problem of determining if there are equilibria that satisfy a given ω-regular specification in a multi-player mean-payoff game in a number of computationally relevant game-theoretic settings.
Partial order games
We introduce a non-cooperative game model in which players' decision nodes are partially ordered by a dependence relation, which directly captures informational dependencies in the game. In saying that a decision node v is dependent on decision nodes v1,…,vk, we mean that the information available to a strategy making a choice at v is precisely the choices that were made at v1,…,vk. Although partial order games are no more expressive than extensive form games of imperfect information (we show that any partial order game can be reduced to a strategically equivalent extensive form game of imperfect information, though possibly at the cost of an exponential blowup in the size of the game), they provide a more natural and compact representation for many strategic settings of interest. After introducing the game model, we investigate the relationship to extensive form games of imperfect information, the problem of computing Nash equilibria, and conditions that enable backwards induction in this new model.
Full Text and Figure Display Improves Bioscience Literature Search
When reading bioscience journal articles, many researchers focus attention on the figures and their captions. This observation led to the development of the BioText literature search engine, a freely available Web-based application that allows biologists to search over the contents of Open Access Journals, and see figures from the articles displayed directly in the search results. This article presents a qualitative assessment of this system in the form of a usability study with 20 biologist participants using and commenting on the system. 19 out of 20 participants expressed a desire to use a bioscience literature search engine that displays articles' figures alongside the full text search results. 15 out of 20 participants said they would use a caption search and figure display interface either frequently or sometimes, while 4 said rarely and 1 said undecided. 10 out of 20 participants said they would use a tool for searching the text of tables and their captions either frequently or sometimes, while 7 said they would use it rarely if at all, 2 said they would never use it, and 1 was undecided. This study found evidence, supporting results of an earlier study, that bioscience literature search systems such as PubMed should show figures from articles alongside search results. It also found evidence that full text and captions should be searched along with the article title, metadata, and abstract. Finally, for a subset of users and information needs, allowing for explicit search within captions for figures and tables is a useful function, but it is not entirely clear how to cleanly integrate this within a more general literature search interface. Such a facility supports Open Access publishing efforts, as it requires access to full text of documents and the lifting of restrictions in order to show figures in the search interface.
Efficient Computation of Semivalues for Game-Theoretic Network Centrality
Some game-theoretic solution concepts such as the Shapley value and the Banzhaf index have recently gained popularity as measures of node centrality in networks. While this direction of research is promising, the computational problems that surround it are challenging and have largely been left open. To date there are only a few positive results in the literature, which show that some game-theoretic extensions of degree-, closeness- and betweenness-centrality measures are computable in polynomial time, i.e., without the need to enumerate the exponential number of all possible coalitions. In this article, we show that these results can be extended to a much larger class of centrality measures that are based on a family of solution concepts known as semivalues. The family of semivalues includes, among others, the Shapley value and the Banzhaf index. To this end, we present a generic framework for defining game-theoretic network centralities and prove that all centrality measures that can be expressed in this framework are computable in polynomial time. Using our framework, we present a number of new and polynomial-time computable game-theoretic centrality measures.
A Classification Scheme for Negotiation in Electronic Commerce
In the last few years we have witnessed a surge of business-to-consumer and business-to-business commerce operated on the Internet. However, most current electronic commerce systems are little more than electronic catalogues that allow a user to purchase a product under predetermined and inflexible terms and conditions. We believe that in the next few years we will see a new generation of electronic commerce systems emerge, based on automated negotiation. In this paper, we identify the main parameters on which any automated negotiation depends. To show the applicability of our classification framework, we use it to categorise a representative sample of some of the most prominent negotiation models that exist in the literature. [PUBLICATION ABSTRACT]
On the computational complexity of weighted voting games
Coalitional games provide a useful tool for modeling cooperation in multiagent systems. An important special class of coalitional games is weighted voting games, in which each player has a weight (intuitively corresponding to its contribution), and a coalition is successful if the sum of its members’ weights meets or exceeds a given threshold. A key question in coalitional games is finding coalitions and payoff division schemes that are stable, i.e., no group of players has any rational incentive to leave. In this paper, we investigate the computational complexity of stability-related questions for weighted voting games. We study problems involving the core , the least core , and the nucleolus , distinguishing those that are polynomial-time computable from those that are NP-hard or coNP-hard, and providing pseudopolynomial and approximation algorithms for some of the computationally hard problems.
On the complexity of rational verification
Rational verification refers to the problem of checking which temporal logic properties hold of a concurrent/multiagent system, under the assumption that agents in the system choose strategies that form a game theoretic equilibrium. Rational verification can be understood as a counterpart to model checking for multiagent systems, but while classical model checking can be done in polynomial time for some temporal logic specification languages such as CTL, and polynomial space with LTL specifications, rational verification is much harder: the key decision problems for rational verification are 2EXPTIME-complete with LTL specifications, even when using explicit-state system representations. Against this background, our contributions in this paper are threefold. First, we show that the complexity of rational verification can be greatly reduced by restricting specifications to GR(1), a fragment of LTL that can represent a broad and practically useful class of response properties of reactive systems. In particular, we show that for a number of relevant settings, rational verification can be done in polynomial space and even in polynomial time. Second, we provide improved complexity results for rational verification when considering players’ goals given by mean-payoff utility functions—arguably the most widely used approach for quantitative objectives in concurrent and multiagent systems. Finally, we consider the problem of computing outcomes that satisfy social welfare constraints. To this end, we consider both utilitarian and egalitarian social welfare and show that computing such outcomes is either PSPACE-complete or NP-complete.