Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
33
result(s) for
"Woollacott, Ione"
Sort by:
C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins
by
Pickering-Brown, Stuart
,
Partridge, Linda
,
Hendrich, Oliver
in
amyotrophic lateral sclerosis
,
Amyotrophic Lateral Sclerosis - genetics
,
Amyotrophic Lateral Sclerosis - pathology
2014
An expanded GGGGCC repeat in C9orf72 is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. A fundamental question is whether toxicity is driven by the repeat RNA itself and/or by dipeptide repeat proteins generated by repeat-associated, non-ATG translation. To address this question, we developed in vitro and in vivo models to dissect repeat RNA and dipeptide repeat protein toxicity. Expression of pure repeats, but not stop codon–interrupted “RNA-only” repeats in Drosophila caused adult-onset neurodegeneration.Thus, expanded repeats promoted neurodegeneration through dipeptide repeat proteins. Expression of individual dipeptide repeat proteins with a non-GGGGCC RNA sequence revealed that both poly-(glycine-arginine) and poly-(proline-arginine) proteins caused neurodegeneration. These findings are consistent with a dual toxicity mechanism, whereby both arginine-rich proteins and repeat RNA contribute to C9orf72-mediated neurodegeneration.
Journal Article
The C9ORF72 expansion mutation: gene structure, phenotypic and diagnostic issues
by
Mead, Simon
,
Woollacott, Ione O. C.
in
Alternative Splicing
,
Alzheimer's disease
,
Amyotrophic lateral sclerosis
2014
The discovery of the
C9ORF72
hexanucleotide repeat expansion in 2011 and the immediate realisation of a remarkably high prevalence in both familial and sporadic frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) triggered an explosion of interest in studies aiming to define the associated clinical and investigation phenotypes and attempts to develop technologies to measure more accurately the size of the repeat region. This article reviews progress in these areas over the subsequent 2 years, focussing on issues directly relevant to the practising physician. First, we summarise findings from studies regarding the global prevalence of the expansion, not only in FTLD and ALS cases, but also in other neurological diseases and its concurrence with other genetic mutations associated with FTLD and ALS. Second, we discuss the variability in normal repeat number in cases and controls and the theories regarding the relevance of intermediate and pathological repeat number for disease risk and clinical phenotype. Third, we discuss the usefulness of various features within the FTLD and ALS clinical phenotype in aiding differentiation between cases with and without the
C9ORF72
expansion. Fourth, we review clinical investigations used to identify cases with the expansion, including neuroimaging and cerebrospinal fluid markers, and describe the mechanisms and limitations of the various diagnostic laboratory techniques used to quantify repeat number in cases and controls. Finally, we discuss the issues surrounding accurate clinical and technological diagnosis of patients with FTLD and/or ALS associated with the
C9ORF72
expansion, and outline areas for future research that might aid better diagnosis and genetic counselling of patients with seemingly sporadic or familial FTLD or ALS and their relatives.
Journal Article
Microglial burden, activation and dystrophy patterns in frontotemporal lobar degeneration
by
Lashley, Tammaryn
,
Woollacott, Ione O. C.
,
Rohrer, Jonathan D.
in
Adult
,
Aged
,
Alzheimer's disease
2020
Background
Microglial dysfunction is implicated in frontotemporal lobar degeneration (FTLD). Although studies have reported excessive microglial activation or senescence (dystrophy) in Alzheimer’s disease (AD), few have explored this in FTLD. We examined regional patterns of microglial burden, activation and dystrophy in sporadic and genetic FTLD, sporadic AD and controls.
Methods
Immunohistochemistry was performed in frontal and temporal grey and white matter from 50 pathologically confirmed FTLD cases (31 sporadic, 19 genetic: 20 FTLD-tau, 26 FTLD-TDP, four FTLD-FUS), five AD cases and five controls, using markers to detect phagocytic (CD68-positive) and antigen-presenting (CR3/43-positive) microglia, and microglia in general (Iba1-positive). Microglial burden and activation (morphology) were assessed quantitatively for each microglial phenotype. Iba1-positive microglia were assessed semi-quantitatively for dystrophy severity and qualitatively for rod-shaped and hypertrophic morphology. Microglia were compared in each region between FTLD, AD and controls, and between different pathological subtypes of FTLD, including its main subtypes (FTLD-tau, FTLD-TDP, FTLD-FUS), and subtypes of FTLD-tau, FTLD-TDP and genetic FTLD. Microglia were also compared between grey and white matter within each lobe for each group.
Results
There was a higher burden of phagocytic and antigen-presenting microglia in FTLD and AD cases than controls, but activation was often not increased. Burden was generally higher in white matter than grey matter, but activation was greater in grey matter. However, microglia varied regionally according to FTLD subtype and disease mechanism. Dystrophy was more severe in FTLD and AD than controls, and more severe in white than grey matter, but this also varied regionally and was particularly extensive in FTLD due to progranulin (
GRN
) mutations. Presence of rod-shaped and hypertrophic microglia also varied by FTLD subtype.
Conclusions
This study demonstrates regionally variable microglial involvement in FTLD and links this to underlying disease mechanisms. This supports investigation of microglial dysfunction in disease models and consideration of anti-senescence therapies in clinical trials.
Journal Article
Differential chemokine alteration in the variants of primary progressive aphasia—a role for neuroinflammation
by
Sogorb-Esteve, Aitana
,
Woollacott, Ione O. C.
,
Rohrer, Jonathan D.
in
Aged
,
Alzheimer's disease
,
alzheimers-disease
2021
Background
The primary progressive aphasias (PPA) represent a group of usually sporadic neurodegenerative disorders with three main variants: the nonfluent or agrammatic variant (nfvPPA), the semantic variant (svPPA), and the logopenic variant (lvPPA). They are usually associated with a specific underlying pathology: nfvPPA with a primary tauopathy, svPPA with a TDP-43 proteinopathy, and lvPPA with underlying Alzheimer’s disease (AD). Little is known about their cause or pathophysiology, but prior studies in both AD and svPPA have suggested a role for neuroinflammation. In this study, we set out to investigate the role of chemokines across the PPA spectrum, with a primary focus on central changes in cerebrospinal fluid (CSF)
Methods
Thirty-six participants with sporadic PPA (11 svPPA, 13 nfvPPA, and 12 lvPPA) as well as 19 healthy controls were recruited to the study and donated CSF and plasma samples. All patients with lvPPA had a tau/Aβ42 biomarker profile consistent with AD, whilst this was normal in the other PPA groups and controls. We assessed twenty chemokines in CSF and plasma using Proximity Extension Assay technology: CCL2 (MCP-1), CCL3 (MIP-1a), CCL4 (MIP-1β), CCL7 (MCP-3), CCL8 (MCP-2), CCL11 (eotaxin), CCL13 (MCP-4), CCL19, CCL20, CCL23, CCL25, CCL28, CX3CL1 (fractalkine), CXCL1, CXCL5, CXCL6, CXCL8 (IL-8), CXCL9, CXCL10, and CXCL11.
Results
In CSF, CCL19 and CXCL6 were decreased in both svPPA and nfvPPA compared with controls whilst CXCL5 was decreased in the nfvPPA group with a borderline significant decrease in the svPPA group. In contrast, CCL2, CCL3 and CX3CL1 were increased in lvPPA compared with controls and nfvPPA (and greater than svPPA for CX3CL1). CXCL1 was also increased in lvPPA compared with nfvPPA but not the other groups. CX3CL1 was significantly correlated with CSF total tau concentrations in the controls and each of the PPA groups. Fewer significant differences were seen between groups in plasma, although in general, results were in the opposite direction to CSF, i.e. decreased in lvPPA compared with controls (CCL3 and CCL19), and increased in svPPA (CCL8) and nfvPPA (CCL13).
Conclusion
Differential alteration of chemokines across the PPA variants is seen in both CSF and plasma. Importantly, these results suggest a role for neuroinflammation in these poorly understood sporadic disorders, and therefore also a potential future therapeutic target.
Journal Article
Plasma tau is increased in frontotemporal dementia
2018
BackgroundFrontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder presenting clinically with personality change (behavioural variant FTD (bvFTD)) or language deficits (primary progressive aphasia (PPA)). About a third of FTD is familial with mutations in GRN, MAPT and C9orf72 being the major genetic causes. Robust biomarkers of the underlying pathology are still lacking in FTD with no markers currently being able to distinguish those with tau and TDP-43 inclusions during life.MethodsThis study used an ultrasensitive single molecule methodology to measure plasma tau concentrations in 176 participants: 71 with bvFTD, 83 with PPA and 22 healthy controls. The patient group included 36 with pathogenic mutations in either MAPT (n=12), GRN (n=9) or C9orf72 (n=15). Group comparisons were performed between clinical and genetic groups and controls using a linear regression model with bias-corrected bootstrap CIs. Correlative analyses were performed to investigate associations with measures of disease severity and progression.ResultsHigher plasma tau concentrations were seen in bvFTD (mean 1.96 (SD 1.07) pg/mL) and PPA (2.65 (2.15) pg/mL) compared with controls (1.67 (0.50) pg/mL). Investigating the PPA group further showed significantly higher levels compared with controls in each of the PPA subtypes (non-fluent, semantic and logopenic variants, as well as a fourth group not meeting criteria for one of the three main variants). In the genetic groups, only the MAPT group had significantly increased concentrations (2.62 (1.39) pg/mL) compared with controls. No significant correlations were seen with cross-sectional or longitudinal brain volumes, serum neurofilament light chain concentrations or disease duration.ConclusionPlasma tau levels are increased in FTD in all clinical groups, but in the genetic subtypes only in MAPT mutations, the group of patients who definitively have tau pathology at postmortem. Future studies will be required in pathologically confirmed cohorts to investigate this association further, and whether plasma tau will be helpful in differentiating patients with FTD with tau from those with other pathologies.
Journal Article
CSF synaptic protein concentrations are raised in those with atypical Alzheimer’s disease but not frontotemporal dementia
by
Zetterberg, Henrik
,
Fox, Nick C.
,
Warren, Jason D.
in
Advertising executives
,
Aged
,
Alzheimer Disease - cerebrospinal fluid
2019
Background
Increased CSF levels of a number of synaptic markers have been reported in Alzheimer’s disease (AD), but little is known about their concentrations in frontotemporal dementia (FTD). We investigated this in three synaptic proteins, neurogranin, SNAP-25, and synaptotagmin-1.
Methods
CSF samples were analysed from 66 patients with a disorder in the FTD spectrum and 19 healthy controls. Patients were stratified by their tau to Aβ
42
ratio: those with a ratio of > 1 considered as having likely AD pathology, i.e. an atypical form of AD (‘AD biomarker’ group [
n
= 18]), and < 1 as likely FTD pathology (‘FTD biomarker’ group [
n
= 48]). A subgroup analysis compared those in the FTD group with likely tau (
n
= 7) and TDP-43 (
n
= 18) pathology. Concentrations of neurogranin were measured using two different ELISAs (Ng22 and Ng36), and concentrations of two SNAP-25 fragments (SNAP-25tot and SNAP-25aa40) and synaptotagmin-1 were measured via mass spectrometry.
Results
The AD biomarker group had significantly higher concentrations of all synaptic proteins compared to controls except for synaptotagmin-1 where there was only a trend to increased levels—Ng22, AD mean 232.2 (standard deviation 138.9) pg/ml, controls 137.6 (95.9); Ng36, 225.5 (148.8) pg/ml, 130.0 (80.9); SNAP-25tot, 71.4 (27.9) pM, 53.5 (11.7); SNAP-25aa40, 14.0 (6.3), 7.9 (2.3) pM; and synaptotagmin-1, 287.7 (156.0) pM, 238.3 (71.4). All synaptic measures were significantly higher in the atypical AD group than the FTD biomarker group except for Ng36 where there was only a trend to increased levels—Ng22, 114.0 (117.5); Ng36, 171.1 (75.2); SNAP-25tot, 49.2 (16.7); SNAP-25aa40, 8.2 (3.4); and synaptotagmin-1, 197.1 (78.9). No markers were higher in the FTD biomarker group than controls. No significant differences were seen in the subgroup analysis, but there was a trend to increased levels in those with likely tau pathology.
Conclusions
No CSF synaptic proteins have been shown to be abnormal in those with likely FTD pathologically. Higher CSF synaptic protein concentrations of neurogranin, SNAP-25, and synaptotagmin-1 appear to be related to AD pathology.
Journal Article
Cerebrospinal fluid soluble TREM2 levels in frontotemporal dementia differ by genetic and pathological subgroup
by
Paterson, Ross W.
,
Zetterberg, Henrik
,
Nicholas, Jennifer M.
in
Age Factors
,
Aged
,
Alzheimer's disease
2018
Background
Reliable biomarkers of frontotemporal dementia (FTD) are currently lacking. FTD may be associated with chronic immune dysfunction, microglial activation and raised inflammatory markers, particularly in progranulin (
GRN
) mutation carriers. Levels of soluble triggering receptor expressed on myeloid cells 2 (sTREM2) are elevated in Alzheimer’s disease (AD), but they have not been fully explored in FTD.
Methods
We investigated whether cerebrospinal fluid (CSF) sTREM2 levels differ between FTD and controls, across different clinical and genetic subtypes of FTD, or between individuals with FTD due to AD versus non-AD pathology (based on CSF neurodegenerative biomarkers). We also assessed relationships between CSF sTREM2 and other CSF biomarkers (total tau [T-tau], tau phosphorylated at position threonine-181 [P-tau] and β-amyloid 1–42 [Aβ42]) and age and disease duration. Biomarker levels were measured using immunoassays in 17 healthy controls and 64 patients with FTD (behavioural variant FTD,
n
= 20; primary progressive aphasia,
n
= 44). Ten of 64 had familial FTD, with mutations in
GRN
(
n
= 3),
MAPT
(n = 4), or
C9orf72
(
n
= 3). Fifteen of 64 had neurodegenerative biomarkers consistent with AD pathology (11 of whom had logopenic variant PPA). Levels were compared using multivariable linear regressions.
Results
CSF sTREM2 levels did not differ between FTD and controls or between clinical subgroups. However,
GRN
mutation carriers had higher levels than controls (mean ([SD] = 9.7 [2.9] vs. 6.8 [1.6] ng/ml;
P =
0.028) and
MAPT
(3.9 [1.5] ng/ml;
P
= 0.003] or
C9orf72
[4.6 [1.8] ng/ml;
P
= 0.006) mutation carriers. Individuals with AD-like CSF had higher sTREM2 levels than those with non-AD-like CSF (9.0 [3.6] vs. 6.9 [3.0] ng/ml;
P
= 0.029). CSF sTREM2 levels were associated with T-tau levels in control and FTD groups and also with P-tau in those with FTD and AD-like CSF. CSF sTREM2 levels were influenced by both age and disease duration in FTD.
Conclusions
Although CSF sTREM2 levels are not raised in FTD overall or in a particular clinical subtype of FTD, levels are raised in familial FTD associated with
GRN
mutations and in FTD syndromes due to AD pathology. Because CSF sTREM2 levels correlate with a marker of neuronal injury (T-tau), sTREM2 should be explored as a biomarker of disease intensity in future longitudinal studies of FTD.
Journal Article
Searching for novel cerebrospinal fluid biomarkers of tau pathology in frontotemporal dementia: an elusive quest
by
Warren, Jason D
,
Heslegrave, Amanda J
,
Zetterberg, Henrik
in
Aged
,
Alzheimer Disease - cerebrospinal fluid
,
Alzheimer Disease - diagnosis
2019
BackgroundFrontotemporal dementia (FTD) is a pathologically heterogeneous neurodegenerative disorder associated usually with tau or TDP-43 pathology, although some phenotypes such as logopenic variant primary progressive aphasia are more commonly associated with Alzheimer’s disease pathology. Currently, there are no biomarkers able to diagnose the underlying pathology during life. In this study, we aimed to investigate the potential of novel tau species within cerebrospinal fluid (CSF) as biomarkers for tau pathology in FTD.Methods86 participants were included: 66 with a clinical diagnosis within the FTD spectrum and 20 healthy controls. Immunoassays targeting tau fragments N-123, N-mid-region, N-224 and X-368, as well as a non-phosphorylated form of tau were measured in CSF, along with total-tau (T-tau) and phospho-tau (P-tau(181)). Patients with FTD were grouped based on their Aβ42 level into those likely to have underlying Alzheimer’s disease (AD) pathology (n=21) and those with likely frontotemporal lobar degeneration (FTLD) pathology (n=45). The FTLD group was then subgrouped based on their underlying clinical and genetic diagnoses into those with likely tau (n=7) or TDP-43 (n=18) pathology.ResultsSignificantly higher concentrations of tau N-mid-region, tau N-224 and non-phosphorylated tau were seen in both the AD group and FTLD group compared with controls. However, none of the novel tau species showed a significant difference between the AD and FTLD groups, nor between the TDP-43 and tau pathology groups. In a subanalysis, normalising for total-tau, none of the novel tau species provided a higher sensitivity and specificity to distinguish between tau and TDP-43 pathology than P-tau(181)/T-tau, which itself only had a sensitivity of 61.1% and specificity of 85.7% with a cut-off of <0.109.ConclusionsDespite investigating multiple novel CSF tau fragments, none show promise as an FTD biomarker and so the quest for in vivo markers of FTLD-tau pathology continues.
Journal Article
Idiopathic intracranial hypertension presenting as iron deficiency anemia: a case report
by
Taribagil, Priyal
,
Woollacott, Ione O. C.
,
Rashid, Safina
in
Adult
,
Anemia
,
Anemia, Iron-Deficiency - diagnosis
2021
Background
The presentation of idiopathic intracranial hypertension (IIH) in association with iron deficiency anemia (IDA) is rare.
Case presentation
This case report depicts the unusual case of a 31-year-old woman of mixed Jamaican and English heritage with IIH who presented initially as IDA in the context of menorrhagia. Subsequent ophthalmic review, lumbar puncture, cerebrospinal fluid analysis and neuroimaging studies revealed severe bilateral optic disc swelling and raised intracranial pressure in keeping with IIH. Prompt treatment of IDA with blood transfusion and orally administered iron supplements, in addition to medical treatment for IIH, contributed to significant improvement of symptoms and prevented long-term visual deficits.
Conclusion
The possibility of IDA, albeit rare, should always be considered and investigated appropriately in all patients with IIH, as the treatment of the anemia alone may be sight-saving.
Journal Article
Clinical value of cerebrospinal fluid neurofilament light chain in semantic dementia
by
Sánchez-Valle, Raquel
,
Diehl-Schmid, Janine
,
Del Campo, Marta
in
Aged
,
Alzheimer's disease
,
Aphasia
2019
BackgroundSemantic dementia (SD) is a neurodegenerative disorder characterised by progressive language problems falling within the clinicopathological spectrum of frontotemporal lobar degeneration (FTLD). The development of disease-modifying agents may be facilitated by the relative clinical and pathological homogeneity of SD, but we need robust monitoring biomarkers to measure their efficacy. In different FTLD subtypes, neurofilament light chain (NfL) is a promising marker, therefore we investigated the utility of cerebrospinal fluid (CSF) NfL in SD.MethodsThis large retrospective multicentre study compared cross-sectional CSF NfL levels of 162 patients with SD with 65 controls. CSF NfL levels of patients were correlated with clinical parameters (including survival), neuropsychological test scores and regional grey matter atrophy (including longitudinal data in a subset).ResultsCSF NfL levels were significantly higher in patients with SD (median: 2326 pg/mL, IQR: 1628–3593) than in controls (577 (446–766), p<0.001). Higher CSF NfL levels were moderately associated with naming impairment as measured by the Boston Naming Test (rs =−0.32, p=0.002) and with smaller grey matter volume of the parahippocampal gyri (rs =−0.31, p=0.004). However, cross-sectional CSF NfL levels were not associated with progression of grey matter atrophy and did not predict survival.ConclusionCSF NfL is a promising biomarker in the diagnostic process of SD, although it has limited cross-sectional monitoring or prognostic abilities.
Journal Article