Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
32
result(s) for
"Woosley, Ryan J."
Sort by:
The annual update GLODAPv2.2023: the global interior ocean biogeochemical data product
2024
The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2023 is an update of the previous version, GLODAPv2.2022 (Lauvset et al., 2022). The major changes are as follows: data from 23 new cruises were added. In addition, a number of changes were made to the data included in GLODAPv2.2022. GLODAPv2.2023 includes measurements from more than 1.4 million water samples from the global oceans collected on 1108 cruises. The data for the now 13 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, chlorofluorocarbon-11 (CFC-11), CFC-12, CFC-113, CCl4, and SF6) have undergone extensive quality control with a focus on the systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but converted to World Ocean Circulation Experiment (WOCE) exchange format and (ii) as a merged data product with adjustments applied to minimize bias. For the present annual update, adjustments for the 23 new cruises were derived by comparing those data with the data from the 1085 quality-controlled cruises in the GLODAPv2.2022 data product using crossover analysis. SF6 data from all cruises were evaluated by comparison with CFC-12 data measured on the same cruises. For nutrients and ocean carbon dioxide (CO2), chemistry comparisons to estimates based on empirical algorithms provided additional context for adjustment decisions. The adjustments that we applied are intended to remove potential biases from errors related to measurement, calibration, and data-handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete CO2 fugacity (fCO2), were not subjected to bias comparison or adjustments. The original data, their documentation, and DOI codes are available at the Ocean Carbon and Acidification Data System of NOAA National Centers for Environmental Information (NCEI), which also provides access to the merged data product. This is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/zyrq-ht66 (Lauvset et al., 2023). These bias-adjusted product files also include significant ancillary and approximated data, which were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2023 methods and provides a broad overview of the secondary quality control procedures and results.
Journal Article
The solubility of fish-produced high magnesium calcite in seawater
by
Grosell, Martin
,
Woosley, Ryan J.
,
Millero, Frank J.
in
Alkalinity
,
Biological oceanography
,
Calcite
2012
Fish have been shown to produce high (10 to 48 mol %) magnesium calcite as part of the physiological mechanisms responsible for maintaining salt and water balance. The importance of this source to the marine carbon cycle is only now being considered. In this paper, we report the first measurements of the solubility of this CaCO3 in seawater. The resulting solubility (pK*sp = 5.89 ± 0.09) is approximately two times higher than aragonite and similar to the high magnesium calcite generated on the Bahamas Banks (pK*sp = 5.90). This high solubility of fish‐produced CaCO3 is a result of the high magnesium content and not a product of micro‐environments created by microbial activity. This material is soluble in near surface waters, contributing to the input of carbonate to surface ocean waters, and may at least partially explain the observed increase in total alkalinity above the aragonite saturation horizon. Key Points First solubility measurements of fish‐produced high Mg calcite Mg calcite is approximately twice as soluble as aragonite Mg calcite contributes to CaCO3 dissolution above aragonite saturation horizon
Journal Article
Effect of Dissolved Organic Carbon and Alkalinity on the Density of Arctic Ocean Waters
by
Millero, Frank J
,
Huang, Fen
,
Woosley, Ryan J
in
Alkalinity
,
Arctic region
,
calcium carbonate
2011
At constant temperature, the density of deep waters in the oceans is higher than that of surface waters due to the oxidation of plant material that adds NO3, PO4, and Si(OH)4, and the dissolution of CaCO3(s) that adds Ca2+ and HCO3. These increases in the density have been used to estimate the absolute salinity of seawater that is needed to determine its thermodynamic properties. Density (ρ), total alkalinity (TA), and dissolved organic carbon (DOC) measurements were taken on waters collected in the eastern Arctic Ocean. The results were examined relative to the properties of North Atlantic Waters. The excess densities (Δρ = ρMeas − ρCalc) in the surface Arctic waters were higher than expected (maximum of 0.008 kg m−3) when compared to Standard Seawater. This excess is due to the higher values of the normalized total alkalinity (NTA = TA * 35/S) (up to ~2,650 μmol kg−1) and DOC (up to ~130 μmol kg−1) resulting from river water input. New measurements are needed to determine how the DOC in the river waters contributes to the TA of the surface waters. The values of Δρ in deep waters are slightly lower (−0.004 ± 0.002 kg m−3) than that in Standard Seawater. The deep waters in the Arctic Ocean, unlike the Atlantic, Pacific, Indian, and Southern Oceans, do not have significant concentrations of silicate (maximum ~15 μmol kg−1) and that can affect the densities. Since the NTA of the deep Arctic waters (2,305 ± 6 μmol kg−1) is the same as Standard Seawater (2,306 ± 3 μmol kg−1), the decrease in the density may be caused by the lower concentrations of DOC in the deep waters (44–50 μmol kg−1 compared to the Standard Seawater value of 57 ± 2 μmol kg−1). The relative deficit of DOC (7–13 μmol kg−1) in the deep Arctic waters appears to cause the lower densities (−0.004 kg m−3) and Absolute Salinities (S A, −0.004 g kg−1). The effect of increases or decreases in Δρ and δS A due to DOC in other deep ocean waters may be hidden in the correlations of the changes with silicate. Further work is needed to separate the effects of SiO2 and DOC on the density of deep waters of the world oceans.
Journal Article
Chemistry of the consumption and excretion of the bumphead parrotfish (Bolbometopon muricatum), a coral reef mega-consumer
2019
Bolbometopon muricatum are ecologically unique mega-consumers in coral reef ecosystems. They primarily divide their dietary intake between living scleractinian corals and coral rock, a substrate richly colonized by non-coral biota. Here we examine how the chemical, structural, and energetic content of these two main classes of forage material may influence B. muricatum feeding behavior and selectivity. We then also examine nutrient content, pH, and alkalinity of the carbonate-rich feces of B. muricatum as a step toward understanding how B. muricatum defecation could affect reef nutrient dynamics and localized seawater chemistry. Our results suggest that by most measures, coral rock constitutes a richer food source than living corals, exhibiting higher levels of eight biologically relevant elements, and containing approximately three times greater caloric value than living corals. Additionally, the two forage types also presented distinct mineralogy, with the coral rock resembling a Mg-enriched carbonate phase in contrast to the primarily aragonitic live corals. Despite the fact that individual B. muricatum excrete tons of macerated coral annually, the low measured concentrations of N and P in feces suggest that this excretion may have relatively minor effects of reef macronutrient budgets. We also observed negligible local-scale impacts of B. muricatum feces on seawater pH and alkalinity. The approaches applied here integrate perspectives from marine biogeochemistry, materials science, and ecology. Collectively, these results provide preliminary insight into how reef chemistry could shape foraging of this dominant and vulnerable coral reef consumer and how it, in turn, might affect the chemistry of these reefs.
Journal Article
Freshening of the western Arctic negates anthropogenic carbon uptake potential
2020
As human activities increase the atmospheric concentration of carbon dioxide (CO₂), the oceans are known to absorb a significant portion. The Arctic Ocean has long been considered to have enormous potential to sequester anthropogenic CO₂, and mitigate emissions. The frigid waters make CO₂ more soluble, and as sea ice melts, greater surface area is exposed to absorb CO₂. However, sparse data have made quantifying the amount of anthropogenic CO₂ in the Arctic difficult, stimulating much debate over the basin’s contribution to CO₂ sequestration from the atmosphere. Using three separate cruises in 1994, 2005, and 2015 in the Canada and Makarov basins, we analyze the decadal variability in anthropogenic CO₂ uptake in the central western Arctic. Here we show, from direct carbon system measurements spanning two decades, that despite increased atmospheric CO₂, total dissolved inorganic carbon has actually decreased, with minimal anthropogenic CO₂ uptake. The reduction in dissolved CO₂ results from a dilution of total alkalinity by increased freshwater supply, particularly river water. Changes in the freshwater budget of the western Arctic override its uptake potential, resulting in a weak sink, or possibly source of CO₂.
Journal Article
Estimating the Density and Compressibility of Natural Hypersaline Brines Using the Pitzer Ionic Interaction Model
2015
Measurements of density and compressibility of naturally occurring hypersaline brines (Red Sea, Dead Sea, Orca Basin, and Mono Lake) have been analyzed using Pitzer’s ionic interaction model. Pitzer’s volume and compressibility equations for the major components of brines have been used to estimate the densities and compressibilities as a function of temperature and salinity. The estimates at 25 °C were in reasonable agreement with the measured values (0.008 ± 0.127 × 10⁻³ g cm⁻³). At higher and lower temperatures (0–40 °C), estimates are less reliable (0.229 ± 0.246 × 10⁻³ g cm⁻³). This is largely due to the lack of Pitzer parameters for all the salts at high concentration as a function of temperature. The compressibility estimates at 25 °C are in reasonable agreement with measured values (0.184 ± 0.261 × 10⁻⁶ bar⁻¹), but the estimates from 15 to 35 °C are less reliable (0.204 ± 0.726 × 10⁻⁶ × bar⁻¹), especially at high salinities. This is largely due to the limited compressibility data as a function of temperature for the major components of brines. These results demonstrate the utility of the Pitzer ionic interaction model to obtain reasonable estimates of density and compressibility of natural brines of known composition.
Journal Article
GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product
2022
The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2022 is an update of the previous version, GLODAPv2.2021 (Lauvset et al., 2021). The major changes are as follows: data from 96 new cruises were added, data coverage was extended until 2021, and for the first time we performed secondary quality control on all sulfur hexafluoride (SF6) data. In addition, a number of changes were made to data included in GLODAPv2.2021. These changes affect specifically the SF6 data, which are now subjected to secondary quality control, and carbon data measured on board the RV Knorr in the Indian Ocean in 1994–1995 which are now adjusted using certified reference material (CRM) measurements made at the time. GLODAPv2.2022 includes measurements from almost 1.4 million water samples from the global oceans collected on 1085 cruises. The data for the now 13 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, chlorofluorocarbon-11 (CFC-11), CFC-12, CFC-113, CCl4, and SF6) have undergone extensive quality control with a focus on systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but converted to World Ocean Circulation Experiment (WOCE) exchange format and (ii) as a merged data product with adjustments applied to minimize bias. For the present annual update, adjustments for the 96 new cruises were derived by comparing those data with the data from the 989 quality-controlled cruises in the GLODAPv2.2021 data product using crossover analysis. SF6 data from all cruises were evaluated by comparison with CFC-12 data measured on the same cruises. For nutrients and ocean carbon dioxide (CO2) chemistry comparisons to estimates based on empirical algorithms provided additional context for adjustment decisions. The adjustments that we applied are intended to remove potential biases from errors related to measurement, calibration, and data handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete CO2 fugacity (fCO2), were not subjected to bias comparison or adjustments.
Journal Article
Hydrolysis of Al(III) in NaCl solutions: A Model for M(II), M(III), and M(IV) Ions
by
Millero, Frank J
,
Woosley, Ryan J
in
aluminum
,
chromium
,
Divalent, trivalent, and quadrivalent metals
2010
Understanding the identity and stability of the hydrolysis products of metals is required in order to predict their behavior in natural aquatic systems. Despite this need, the hydrolysis constants of many metals are only known over a limited range of temperature and ionic strengths. In this paper, we show that the hydrolysis constants of 31 metals [i.e. Mn(II), Cr(III), U(IV), Pu(IV)] are nearly linearly related to the values for Al(III) over a wide range of temperatures and ionic strengths. These linear correlations allow one to make reasonable estimates for the hydrolysis constants of +2, +3, and +4 metals from 0 to 300°C in dilute solutions and 0 to 100°C to 5 m in NaCl solutions. These correlations in pure water are related to the differences between the free energies of the free ion and complexes being almost equal The correlation at higher temperatures is a result of a similar relationship between the enthalpies of the free ions and complexes The correlations at higher ionic strengths are the result of the ratio of the activity coefficients for Al(III) being almost equal to that of the metal. The results of this study should be useful in examining the speciation of metals as a function of pH in natural waters (e.g. hydrothermal fresh waters and NaCl brines).
Journal Article
An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020
2020
The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2020 is an update of the previous version, GLODAPv2.2019. The major changes are data from 106 new cruises added, extension of time coverage to 2019, and the inclusion of available (also for historical cruises) discrete fugacity of CO2 (fCO2) values in the merged product files. GLODAPv2.2020 now includes measurements from more than 1.2 million water samples from the global oceans collected on 946 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control with a focus on systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to WOCE exchange format and (ii) as a merged data product with adjustments applied to minimize bias. These adjustments were derived by comparing the data from the 106 new cruises with the data from the 840 quality-controlled cruises of the GLODAPv2.2019 data product using crossover analysis. Comparisons to empirical algorithm estimates provided additional context for adjustment decisions; this is new to this version. The adjustments are intended to remove potential biases from errors related to measurement, calibration, and data-handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete fCO2, were not subjected to bias comparison or adjustments. The original data and their documentation and DOI codes are available at the Ocean Carbon Data System of NOAA NCEI (https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2020/, last access: 20 June 2020). This site also provides access to the merged data product, which is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/2c8h-sa89 (Olsen et al., 2020). These bias-adjusted product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2020 methods and provides a broad overview of the secondary quality control procedures and results.
Journal Article
An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2021
2021
The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2021 is an update of the previous version, GLODAPv2.2020 (Olsen et al., 2020). The major changes are as follows: data from 43 new cruises were added, data coverage was extended until 2020, all data with missing temperatures were removed, and a digital object identifier (DOI) was included for each cruise in the product files. In addition, a number of minor corrections to GLODAPv2.2020 data were performed. GLODAPv2.2021 includes measurements from more than 1.3 million water samples from the global oceans collected on 989 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control with a focus on systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to World Ocean Circulation Experiment (WOCE) exchange format and (ii) as a merged data product with adjustments applied to minimize bias. For this annual update, adjustments for the 43 new cruises were derived by comparing those data with the data from the 946 quality controlled cruises in the GLODAPv2.2020 data product using crossover analysis. Comparisons to estimates of nutrients and ocean CO2 chemistry based on empirical algorithms provided additional context for adjustment decisions in this version. The adjustments are intended to remove potential biases from errors related to measurement, calibration, and data handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent with to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete CO2 fugacity (fCO2), were not subjected to bias comparison or adjustments. The original data, their documentation, and DOI codes are available at the Ocean Carbon Data System of NOAA NCEI (https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/GLODAPv2_2021/, last access: 7 July 2021). This site also provides access to the merged data product, which is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/ttgq-n825 (Lauvset et al., 2021). These bias-adjusted product files also include significant ancillary and approximated data and can be accessed via https://www.glodap.info (last access: 29 June 2021). These were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2021 methods and provides a broad overview of the secondary quality control procedures and results.
Journal Article