Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Wortel, Verginia"
Sort by:
Optimal strategies for ecosystem services provision in Amazonian production forests
Although tropical forests harbour most of the terrestrial carbon and biological diversity on Earth they continue to be deforested or degraded at high rates. In Amazonia, the largest tropical forest on Earth, a sixth of the remaining natural forests is formally dedicated to timber extraction through selective logging. Reconciling timber extraction with the provision of other ecosystem services (ES) remains a major challenge for forest managers and policy-makers. This study applies a spatial optimisation of logging in Amazonian production forests to analyse potential trade-offs between timber extraction and recovery, carbon storage, and biodiversity conservation. Current logging regulations with unique cutting cycles result in sub-optimal ES-use efficiency. Long-term timber provision would require the adoption of a land-sharing strategy that involves extensive low-intensity logging, although high transport and road-building costs might make this approach economically unattractive. By contrast, retention of carbon and biodiversity would be enhanced by a land-sparing strategy restricting high-intensive logging to designated areas such as the outer fringes of the region. Depending on management goals and societal demands, either choice will substantially influence the future of Amazonian forests. Overall, our results highlight the need for revaluation of current logging regulations and regional cooperation among Amazonian countries to enhance coherent and trans-boundary forest management.
Stump Sprout Characteristics of Three Commercial Tree Species in Suriname
We compared stump sprouting by three common timber species in Suriname on the basis of sprout origins on stumps, sprout densities, and sprout height:diameter ratios. We then compared some leaf and stem functional traits of 15–18-month-old resprouts and nearby conspecific saplings of the same height (0.5–3.5 m) but unknown age. Stumps of Dicorynia guianensis Amsh. (29–103 cm in diameter) produced the most sprouts (x = 9.2/stump), followed by the 50–71 cm diameter stumps of Eperua falcata Amsh. (10.6/stump), and the 30–78 cm diameter Qualea rosea Amsh. (5.9/stump); sprout density did not vary with stump diameter. Sprouts emerged from the lower, middle, and upper thirds of the stumps of all three species, but not from the vicinity of the exposed vascular cambium in Qualea. With increased resprout density, heights of the tallest sprout per stump tended to increase but height:diameter ratios increased only in Dicorynia. Compared to conspecific saplings, sprouts displayed higher height-diameter ratios, higher leaf-to-wood mass ratios (LWR), and lower wood densities, but did not differ in leaf mass per unit area (LMA) or leaf water contents. These acquisitive functional traits may reflect increased resprout access to water and nutrients via the extensive root system of the stump. That we did not encounter live stump sprouts from the previous round of selective logging, approximately 25 years before our study, suggests that stump sprouts in our study area grow rapidly but do not live long.
Positive biodiversity-productivity relationship predominant in global forests
This work was supported in part by West Virginia University under the United States Department of Agriculture (USDA) McIntire-Stennis Funds WVA00104 and WVA00105; U.S. National Science Foundation (NSF) Long-Term Ecological Research Program at Cedar Creek (DEB-1234162); the University of Minnesota Department of Forest Resources and Institute on the Environment; the Architecture and Environment Department of Italcementi Group, Bergamo (Italy); a Marie Skłodowska Curie fellowship; Polish National Science Center grant 2011/02/A/NZ9/00108; the French L’Agence Nationale de la Recherche (ANR) (Centre d’Étude de la Biodiversité Amazonienne: ANR-10-LABX-0025); the General Directory of State Forest National Holding DB; General Directorate of State Forests, Warsaw, Poland (Research Projects 1/07 and OR/2717/3/11); the 12th Five-Year Science and Technology Support Project (grant 2012BAD22B02) of China; the U.S. Geological Survey and the Bonanza Creek Long Term Ecological Research Program funded by NSF and the U.S. Forest Service (any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. government); National Research Foundation of Korea (grant NRF-2015R1C1A1A02037721), Korea Forest Service (grants S111215L020110, S211315L020120 and S111415L080120) and Promising-Pioneering Researcher Program through Seoul National University (SNU) in 2015; Core funding for Crown Research Institutes from the New Zealand Ministry of Business, Innovation and Employment’s Science and Innovation Group; the Deutsche Forschungsgemeinschaft (DFG) Priority Program 1374 Biodiversity Exploratories; Chilean research grants Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) 1151495 and 11110270; Natural Sciences and Engineering Research Council of Canada (grant RGPIN-2014-04181); Brazilian Research grants CNPq 312075/2013 and FAPESC 2013/TR441 supporting Santa Catarina State Forest Inventory (IFFSC); the General Directorate of State Forests, Warsaw, Poland; the Bavarian State Ministry for Nutrition, Agriculture, and Forestry project W07; the Bavarian State Forest Enterprise (Bayerische Staatsforsten AöR); German Science Foundation for project PR 292/12-1; the European Union for funding the COST Action FP1206 EuMIXFOR; FEDER/ COMPETE/POCI under Project POCI-01-0145-FEDER-006958 and FCT–Portuguese Foundation for Science and Technology under the project UID/AGR/04033/2013; Swiss National Science Foundation grant 310030B_147092; the EU H2020 PEGASUS project (no 633814), EU H2020 Simwood project (no 613762); and the European Union’s Horizon 2020 research and innovation program within the framework of the MultiFUNGtionality Marie Skłodowska-Curie Individual Fellowship (IF-EF) under grant agreement 655815. The expeditions in Cameroon to collect the data were partly funded by a grant from the Royal Society and the Natural Environment Research Council (UK) to Simon L. Lewis.
Positive biodiversity-productivity relationship predominant in global forests
The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.