Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Wosik, Jedrek"
Sort by:
Impact of the COVID-19 pandemic on patterns of outpatient cardiovascular care
The coronavirus disease 2019 (COVID-19) pandemic brought about abrupt changes in the way health care is delivered, and the impact of transitioning outpatient clinic visits to telehealth visits on processes of care and outcomes is unclear. We evaluated ordering patterns during cardiovascular telehealth clinic visits in the Duke University Health System between March 15 and June 30, 2020 and 30-day outcomes compared with in-person visits in the same time frame in 2020 and in 2019. Within the Duke University Health System, there was a 33.1% decrease in the number of outpatient cardiovascular visits conducted in the first 15 weeks of the COVID-19 pandemic, compared with the same time period in 2019. As a proportion of total visits initially booked, 53% of visits were cancelled in 2020 compared to 35% in 2019. However, patients with cancelled visits had similar demographics and comorbidities in 2019 and 2020. Telehealth visits comprised 9.3% of total visits initially booked in 2020, with younger and healthier patients utilizing telehealth compared with those utilizing in-person visits. Compared with in-person visits in 2020, telehealth visits were associated with fewer new (31.6% for telehealth vs 44.6% for in person) or refill (12.9% vs 15.6%, respectively) medication prescriptions, electrocardiograms (4.3% vs 31.4%), laboratory orders (5.9% vs 21.8%), echocardiograms (7.3% vs 98%), and stress tests (4.4% vs 6.6%). When adjusted for age, race, and insurance status, those who had a telehealth visit or cancelled their visit were less likely to have an emergency department or hospital encounter within 30 days compared with those who had in-person visits (adjusted rate ratios (aRR) 0.76 [95% 0.65, 0.89] and aRR 0.71 [95% 0.65, 0.78], respectively). In response to the perceived risks of routine medical care affected by the COVID-19 pandemic, different phenotypes of patients chose different types of outpatient cardiology care. A better understanding of these differences could help define necessary and appropriate mode of care for cardiology patients.
Evaluating the Performance of ChatGPT for Spam Email Detection
Email continues to be a pivotal and extensively utilized communication medium within professional and commercial domains. Nonetheless, the prevalence of spam emails poses a significant challenge for users, disrupting their daily routines and diminishing productivity. Consequently, accurately identifying and filtering spam based on content has become crucial for cybersecurity. Recent advancements in natural language processing, particularly with large language models like ChatGPT, have shown remarkable performance in tasks such as question answering and text generation. However, its potential in spam identification remains underexplored. To fill in the gap, this study attempts to evaluate ChatGPT's capabilities for spam identification in both English and Chinese email datasets. We employ ChatGPT for spam email detection using in-context learning, which requires a prompt instruction and a few demonstrations. We also investigate how the number of demonstrations in the prompt affects the performance of ChatGPT. For comparison, we also implement five popular benchmark methods, including naive Bayes, support vector machines (SVM), logistic regression (LR), feedforward dense neural networks (DNN), and BERT classifiers. Through extensive experiments, the performance of ChatGPT is significantly worse than deep supervised learning methods in the large English dataset, while it presents superior performance on the low-resourced Chinese dataset.
Students Need More Attention: BERT-based AttentionModel for Small Data with Application to AutomaticPatient Message Triage
Small and imbalanced datasets commonly seen in healthcare represent a challenge when training classifiers based on deep learning models. So motivated, we propose a novel framework based on BioBERT (Bidirectional Encoder Representations from Transformers forBiomedical TextMining). Specifically, (i) we introduce Label Embeddings for Self-Attention in each layer of BERT, which we call LESA-BERT, and (ii) by distilling LESA-BERT to smaller variants, we aim to reduce overfitting and model size when working on small datasets. As an application, our framework is utilized to build a model for patient portal message triage that classifies the urgency of a message into three categories: non-urgent, medium and urgent. Experiments demonstrate that our approach can outperform several strong baseline classifiers by a significant margin of 4.3% in terms of macro F1 score. The code for this project is publicly available at \\url{https://github.com/shijing001/text_classifiers}.