Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
137
result(s) for
"Wright, Justin P."
Sort by:
Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Eleven Wetland Plants
2012
The increasing commercial production of engineered nanoparticles (ENPs) has led to concerns over the potential adverse impacts of these ENPs on biota in natural environments. Silver nanoparticles (AgNPs) are one of the most widely used ENPs and are expected to enter natural ecosystems. Here we examined the effects of AgNPs on germination and growth of eleven species of common wetland plants. We examined plant responses to AgNP exposure in simple pure culture experiments (direct exposure) and for seeds planted in homogenized field soils in a greenhouse experiment (soil exposure). We compared the effects of two AgNPs-20-nm polyvinylpyrrolidine-coated silver nanoparticles (PVP-AgNPs) and 6-nm gum arabic coated silver nanoparticles (GA-AgNPs)-to the effects of AgNO(3) exposure added at equivalent Ag concentrations (1, 10 or 40 mg Ag L(-1)). In the direct exposure experiments, PVP-AgNP had no effect on germination while 40 mg Ag L(-1) GA-AgNP exposure significantly reduced the germination rate of three species and enhanced the germination rate of one species. In contrast, 40 mg Ag L(-1) AgNO(3) enhanced the germination rate of five species. In general root growth was much more affected by Ag exposure than was leaf growth. The magnitude of inhibition was always greater for GA-AgNPs than for AgNO(3) and PVP-AgNPs. In the soil exposure experiment, germination effects were less pronounced. The plant growth response differed by taxa with Lolium multiflorum growing more rapidly under both AgNO(3) and GA-AgNP exposures and all other taxa having significantly reduced growth under GA-AgNP exposure. AgNO(3) did not reduce the growth of any species while PVP-AgNPs significantly inhibited the growth of only one species. Our findings suggest important new avenues of research for understanding the fate and transport of NPs in natural media, the interactions between NPs and plants, and indirect and direct effects of NPs in mixed plant communities.
Journal Article
Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario
2013
A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of model organisms. These results are difficult to extrapolate to ecosystems, where exposures will likely be at low-concentrations and which are inhabited by a diversity of organisms. Here we show adverse responses of plants and microorganisms in a replicated long-term terrestrial mesocosm field experiment following a single low dose of silver nanoparticles (0.14 mg Ag kg(-1) soil) applied via a likely route of exposure, sewage biosolid application. While total aboveground plant biomass did not differ between treatments receiving biosolids, one plant species, Microstegium vimeneum, had 32 % less biomass in the Slurry+AgNP treatment relative to the Slurry only treatment. Microorganisms were also affected by AgNP treatment, which gave a significantly different community composition of bacteria in the Slurry+AgNPs as opposed to the Slurry treatment one day after addition as analyzed by T-RFLP analysis of 16S-rRNA genes. After eight days, N2O flux was 4.5 fold higher in the Slurry+AgNPs treatment than the Slurry treatment. After fifty days, community composition and N2O flux of the Slurry+AgNPs treatment converged with the Slurry. However, the soil microbial extracellular enzymes leucine amino peptidase and phosphatase had 52 and 27% lower activities, respectively, while microbial biomass was 35% lower than the Slurry. We also show that the magnitude of these responses was in all cases as large as or larger than the positive control, AgNO3, added at 4-fold the Ag concentration of the silver nanoparticles.
Journal Article
Does the leaf economic spectrum hold within local species pools across varying environmental conditions?
by
Sutton-Grier, Ariana
,
Wright, Justin P.
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Autoecology
2012
1. Understanding patterns of trait variation across environmental variability is necessary for development of ecological predictions. The leaf economic spectrum (LES) has demonstrated global trade-offs in leaf traits, but it is unclear whether such patterns are robust in local communities exposed to varying environments. 2. We conducted separate greenhouse experiments to examine the effects of varying water-table depth and nitrogen availability on leaf-level trait values among a suite of co-occurring wetland species. We then assessed the effects of species-specific trait value responses on relationships predicted by LES and whether species responded similarly to variations in water-table depth and nitrogen availability. 3. We found that both water-table depth and nitrogen availability had significant species by treatment interactions for specific leaf area, leaf nitrogen and photosynthetic rates, indicating species-specific responses to environmental variability. The responses of individual traits to different treatment levels were relatively consistent across species, but multivariate responses were more variable. 4. We found that apart from significant relationships between specific leaf area and photosynthetic rate under some treatments, there was little support for the relationships predicted by the LES. 5. These results suggest that, before trait-based ecology will be able to make progress towards using plant traits to predict responses of communities and ecosystems to changes in environmental drivers, considerable attention needs to be paid to the processes that control intraspecific trait variation.
Journal Article
Rare microbial taxa emerge when communities collide: freshwater and marine microbiome responses to experimental mixing
by
Rocca, Jennifer D.
,
Washburne, Alex D.
,
Wright, Justin P.
in
16S rRNA
,
Aquatic habitats
,
bacteria
2020
Whole microbial communities regularly merge with one another, often in tandem with their environments, in a process called community coalescence. Such events impose substantial changes: abiotic perturbation from environmental blending and biotic perturbation of community merging. We used an aquatic mixing experiment to unravel the effects of these perturbations on the whole microbiome response and on the success of individual taxa when distinct freshwater and marine communities coalesce. We found that an equal mix of freshwater and marine habitats and blended microbiomes resulted in strong convergence of the community structure toward that of the marine microbiome. The enzymatic potential of these blended microbiomes in mixed media also converged toward that of the marine, with strong correlations between the multivariate response patterns of the enzymes and of community structure. Exposing each endmember inocula to an axenic equal mix of their freshwater and marine source waters led to a 96% loss of taxa from our freshwater microbiomes and a 66% loss from our marine microbiomes. When both inocula were added together to this mixed environment, interactions amongst the communities led to a further loss of 29% and 49% of freshwater and marine taxa, respectively. Under both the axenic and competitive scenarios, the diversity lost was somewhat counterbalanced by increased abundance of microbial taxa that were too rare to detect in the initial inocula. Our study emphasizes the importance of the rare biosphere as a critical component of microbial community responses to community coalescence.
Journal Article
Restored forested wetland surprisingly resistant to experimental salinization
by
Ardón, Marcelo
,
Ury, Emily A.
,
Wright, Justin P.
in
Acidification
,
Agricultural ecosystems
,
Agricultural land
2023
Salinization of coastal freshwater wetlands is an increasingly common and widespread phenomenon resulting from climate change. The ecosystem consequences of added salinity are poorly constrained and highly variable across prior observational and experimental studies. We added 1.8 metric tons of marine salts to replicated 200 m 2 plots within a restored forested wetland in Eastern North Carolina over the course of four years. Based on prior small-scale experiments at this site, we predicted that salinization would lead to slower tree growth and suppressed soil carbon cycling. Results from this large-scale field experiment were subtle and inconsistent over space and time. By the fourth year of the experiment, we observed the predicted suppression of soil respiration and a reduction of water extractable carbon from soils receiving salt treatments. However, we found no cumulative effects of four years of salinization on total soil carbon stocks, tree growth, or root biomass. We observed substantial variation in soil solution chemistry (notably, pH and base saturation) across replicated treatment blocks; the effective salt levels, ionic composition, and pH varied following treatment depending upon pre-existing differences in edaphic factors. Our multi-year monitoring also revealed an underlying trend of wetland acidification across the entire site, a suspected effect of ecosystem recovery following wetland restoration on former agricultural land. The overwhelming resistance to our salt treatments could be attributed to the vigor of a relatively young, healthy wetland ecosystem. The heterogeneous responses to salt that we observed over space and time merits further investigation into the environmental factors that control carbon cycling in wetlands. This work highlights the importance of multi-year, large-scale field experiments for investigating ecosystem responses to global environmental change.
Journal Article
Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions
2017
Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.
Journal Article
The Concept of Organisms as Ecosystem Engineers Ten Years On: Progress, Limitations, and Challenges
2006
The modification of the physical environment by organisms is a critical interaction in most ecosystems. The concept of ecosystem engineering acknowledges this fact and allows ecologists to develop the conceptual tools for uncovering general patterns and building broadly applicable models. Although the concept has occasioned some controversy during its development, it is quickly gaining acceptance among ecologists. We outline the nature of some of these controversies and describe some of the major insights gained by viewing ecological systems through the lens of ecosystem engineering. We close by discussing areas of research where we believe the concept of organisms as ecosystem engineers will be most likely to lead to significant insights into the structure and function of ecological systems.
Journal Article
Impacts of plant diversity on biomass production increase through time because of species complementarity
by
Cadotte, Marc W
,
Loreau, Michel
,
Cardinale, Bradley J
in
Biodiversity
,
Biological Sciences
,
Biomass
2007
Accelerating rates of species extinction have prompted a growing number of researchers to manipulate the richness of various groups of organisms and examine how this aspect of diversity impacts ecological processes that control the functioning of ecosystems. We summarize the results of 44 experiments that have manipulated the richness of plants to examine how plant diversity affects the production of biomass. We show that mixtures of species produce an average of 1.7 times more biomass than species monocultures and are more productive than the average monoculture in 79% of all experiments. However, in only 12% of all experiments do diverse polycultures achieve greater biomass than their single most productive species. Previously, a positive net effect of diversity that is no greater than the most productive species has been interpreted as evidence for selection effects, which occur when diversity maximizes the chance that highly productive species will be included in and ultimately dominate the biomass of polycultures. Contrary to this, we show that although productive species do indeed contribute to diversity effects, these contributions are equaled or exceeded by species complementarity, where biomass is augmented by biological processes that involve multiple species. Importantly, both the net effect of diversity and the probability of polycultures being more productive than their most productive species increases through time, because the magnitude of complementarity increases as experiments are run longer. Our results suggest that experiments to date have, if anything, underestimated the impacts of species extinction on the productivity of ecosystems.
Journal Article
Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut
by
Wisniewski, Natalie A
,
Durand, Heather K
,
O'Connell, Thomas M
in
Animals
,
Anti-Bacterial Agents - pharmacology
,
Antibiotics
2018
How host and microbial factors combine to structure gut microbial communities remains incompletely understood. Redox potential is an important environmental feature affected by both host and microbial actions. We assessed how antibiotics, which can impact host and microbial function, change redox state and how this contributes to post-antibiotic succession. We showed gut redox potential increased within hours of an antibiotic dose in mice. Host and microbial functioning changed under treatment, but shifts in redox potentials could be attributed specifically to bacterial suppression in a host-free ex vivo human gut microbiota model. Redox dynamics were linked to blooms of the bacterial family Enterobacteriaceae. Ecological succession to pre-treatment composition was associated with recovery of gut redox, but also required dispersal from unaffected gut communities. As bacterial competition for electron acceptors can be a key ecological factor structuring gut communities, these results support the potential for manipulating gut microbiota through managing bacterial respiration. The gut is home to a large and diverse community of bacteria and other microbes, known as the gut microbiota. The makeup of this community is important for the health of both the host and its residents. For instance, many gut bacteria help to digest food or keep disease-causing bacteria in check. In return, the host provides them with nutrients. When this balance is disturbed, the host is exposed to risks such as infections. In particular, treatments with antibiotics that kill gut bacteria can lead to side effects like diarrhea, because the gut becomes recolonized with harmful bacteria including Clostridium difficile and Salmonella. Reese et al. have now investigated what happens to the gut environment after antibiotic treatment and how the gut microbiota recovers. Mice treated with broad-spectrum antibiotics showed an increase in the “redox potential” of their gut environment. Redox potential captures a number of measures of the chemical makeup of an environment, and provides an estimate for how efficiently some bacteria in that environment can grow. Some of the change in redox potential came from the host’s own immune system releasing chemicals as it reacted to the effects of the treatment. However, Reese et al. found that treating gut bacteria in an artificial gut – which has no immune system – also increased the redox potential. This experiment suggests that bacteria actively shape their chemical environment in the gut. After the treatment, bacteria that thrive under high redox potentials, which include some disease-causing species, recovered first and fastest. This, in turn, helped to bring redox potential back to how it was before the treatment. Although the gut’s chemical environment recovered, some bacterial species were wiped out by the antibiotic treatment. The microbiota only returned to its previous state when the treated mice were housed together with non-treated mice. This was expected because mice that live together commonly exchange microbes, for instance by eating each other’s feces, and the treated mice received new species to replenish their microbiota. These findings are important because they show that the chemical environment shapes and is shaped by the bacterial communities in the gut. Future research may investigate if altering redox potential in the gut could help to keep the microbiota healthier in infections and diseases of the digestive tract.
Journal Article
Effects of biodiversity on the functioning of trophic groups and ecosystems
by
Cardinale, Bradley J.
,
Jouseau, Claire
,
Downing, Amy L.
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Animals
2006
Species loss and productivity
The question of whether species extinction alters the productivity of communities and ecosystem function is the subject of heated controversy. Work performed in the 1990s suggested that species loss can reduce productivity of communities and their efficiency in capturing and consuming limited resources. The interpretation of these studies was disputed, and subsequent work produced counter-examples that question the generality of biodiversity effects. Now Cardinale
et al
. report a meta-analysis of experimental studies of species diversity and ecological function. They conclude that species loss does impair ecological functioning, but that the magnitude of the effect depends on which species are actually lost.
A meta-analysis of experimental studies addresses the relationship between species diversity and ecological functioning, and concludes that reduction in species loss does affect ecological functioning, but that the magnitude of these effects depends on which species are actually lost.
Over the past decade, accelerating rates of species extinction have prompted an increasing number of studies to reduce species diversity experimentally and examine how this alters the efficiency by which communities capture resources and convert those into biomass
1
,
2
. So far, the generality of patterns and processes observed in individual studies have been the subjects of considerable debate
3
,
4
,
5
,
6
,
7
. Here we present a formal meta-analysis of studies that have experimentally manipulated species diversity to examine how it affects the functioning of numerous trophic groups in multiple types of ecosystem. We show that the average effect of decreasing species richness is to decrease the abundance or biomass of the focal trophic group, leading to less complete depletion of resources used by that group. At the same time, analyses reveal that the standing stock of, and resource depletion by, the most species-rich polyculture tends to be no different from that of the single most productive species used in an experiment. Of the known mechanisms that might explain these trends, results are most consistent with what is called the ‘sampling effect’, which occurs when diverse communities are more likely to contain and become dominated by the most productive species. Whether this mechanism is widespread in natural communities is currently controversial. Patterns we report are remarkably consistent for four different trophic groups (producers, herbivores, detritivores and predators) and two major ecosystem types (aquatic and terrestrial). Collectively, our analyses suggest that the average species loss does indeed affect the functioning of a wide variety of organisms and ecosystems, but the magnitude of these effects is ultimately determined by the identity of species that are going extinct.
Journal Article