Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Wu, Chen-Shiou"
Sort by:
EZH2-mediated epigenetic silencing of tumor-suppressive let-7c/miR-99a cluster by hepatitis B virus X antigen enhances hepatocellular carcinoma progression and metastasis
Background Hepatitis B virus (HBV)-encoded X antigen, HBx, assists in the development of hepatocellular carcinoma (HCC) through complex mechanisms. Our results provide new insights into the EZH2 epigenetic repression of let-7c that promotes HCC migration induced by HBx. Thus, let-7c and HMGA2 represent key diagnostic markers and potential therapeutic targets for the treatment of HBV-related HCC. Results We investigated the epigenetic regulation of let-7c, an important representative miRNA in liver tumor metastasis, in human HCC cells to verify the effect of HBx. Based on quantitative PCR (qPCR) of mRNA isolated from tumor and adjacent non-tumor liver tissues of 24 patients with HBV-related HCC, EZH2 expression was significantly overexpressed in most HCC tissues (87.5%). We executed a miRNA microarray analysis in paired HBV-related HCC tumor and adjacent non-tumorous liver tissue from six of these patients and identified let-7c, miR-199a-3p, and miR-99a as being downregulated in the tumor tissue. Real-time PCR analysis verified significant downregulation of let-7c and miR-99a in both HepG2X and Hep3BX cells, which stably overexpress HBx, relative to parental cells. HBX enhanced EZH2 expression and attenuated let-7c expression to induce HMGA2 expression in the HCC cells. Knockdown of HMGA2 significantly downregulated the metastatic potential of HCC cells induced by HBx. Conclusions The deregulation of let-7c expression by HBx may indicate a potential novel pathway through deregulating cell metastasis and imply that HMGA2 might be used as a new prognostic marker and/or as an effective therapeutic target for HCC.
The natural tannins oligomeric proanthocyanidins and punicalagin are potent inhibitors of infection by SARS-CoV-2
The Coronavirus Disease 2019 (COVID-19) pandemic continues to infect people worldwide. While the vaccinated population has been increasing, the rising breakthrough infection persists in the vaccinated population. For living with the virus, the dietary guidelines to prevent virus infection are worthy of and timely to develop further. Tannic acid has been demonstrated to be an effective inhibitor of coronavirus and is under clinical trial. Here we found that two other members of the tannins family, oligomeric proanthocyanidins (OPCs) and punicalagin, are also potent inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with different mechanisms. OPCs and punicalagin showed inhibitory activity against omicron variants of SARS-CoV-2 infection. The water extractant of the grape seed was rich in OPCs and also exhibited the strongest inhibitory activities for viral entry of wild-type and other variants in vitro. Moreover, we evaluated the inhibitory activity of grape seed extractants (GSE) supplementation against SARS-CoV-2 viral entry in vivo and observed that serum samples from the healthy human subjects had suppressive activity against different variants of SARS-CoV-2 Vpp infection after taking GSE capsules. Our results suggest that natural tannins acted as potent inhibitors against SARS-CoV-2 infection, and GSE supplementation could serve as healthy food for infection prevention. Since it first surfaced in late 2019, the COVID-19 pandemic has had a significant impact on people’s lives. While several vaccines have been created, infections have not disappeared. This is largely due to new variants of the virus responsible for the disease (SARS-CoV-2) emerging, which current vaccines do not work as well against. Indeed, several reports suggest that protection from the omicron variant wanes as shortly as four to six months after vaccination. Therefore, other strategies are needed to reduce the risk of SARS-CoV-2 infections. In 2022, researchers discovered that tannic acid blocked two proteins that SARS-CoV-2 needs to enter and replicate inside human cells. Tannic acid is part of the tannin family, which includes natural molecules found in plant-based meals and beverages. Here, Chen et al. – including some of the researchers involved in the 2022 studies – set out to find whether two other tannins found in nature (OPCs and punicalagin) could also inhibit SARS-CoV-2. Chen et al. administered tannic acid, OPCs and punicalagin to human cells cultured in a laboratory that had been infected with SARS-CoV-2. This revealed that all three tannins suppress the activity of the same proteins required for viral entry and replication, but to varying degrees suggesting that they block SARS-CoV-2 infections via different mechanisms. The compounds were also able to inhibit different variants of the virus, including omicron, from infecting the lab-grown cells. Further experiments revealed that water extracted from seeded grapes, which contains high levels of OPCs, could also block SARS-CoV-2 entry in the cell culture system. To test this further, Chen et al. gave 18 healthy individuals capsules containing different concentrations of grape seed extract and collected samples of their serum. The serum samples suppressed entry of different variants of SARS-CoV-2 in the cell culture system, with serums from subjects that received the higher dose having the greatest effect. These findings suggest that naturally occurring tannins can suppress multiple variants of SARS-CoV-2 from entering and replicating in cells. Consuming supplements of grape seed extract could potentially reduce the risk of SARS-CoV-2 infections. However, further experiments, including clinical trials, are needed to test this possibility.
MRCK as a Potential Target for Claudin-Low Subtype of Breast Cancer
To find new molecular targets for triple negative breast cancer (TNBC), we analyzed a large-scale drug screening dataset based on breast cancer subtypes. We discovered that BDP-9066, a specific MRCK inhibitor (MRCKi), may be an effective drug against TNBC. After confirming the efficacy and specificity of BDP-9066 against TNBC and , we further analyzed the underlying mechanism of specific activity of BDP-9066 against TNBC. Comparing the transcriptome of BDP-9066-sensitive and -resistant cells, the activation of the focal adhesion and YAP/TAZ pathway were found to play an important role in the sensitive cells. Furthermore, YAP/TAZ is indeed repressed by BDP-9066 in the sensitive cells, and active form of YAP suppresses the effects of BDP-9066. YAP/TAZ expression and activity are high in TNBC, especially the Claudin-low subtype, consistent with the expression of focal adhesion-related genes. Interestingly, NF-κB functions downstream of YAP/TAZ in TNBC cells and is suppressed by BDP-9066. Furthermore, the PI3 kinase pathway adversely affected the effects of BDP-9066 and that alpelisib, a PI3 kinase inhibitor, synergistically increased the effects of BDP-9066, in mutant TNBC cells. Taken together, we have shown for the first time that MRCKi can be new drugs against TNBC, particularly the Claudin-low subtype.
Coffee as a dietary strategy to prevent SARS-CoV-2 infection
Background To date, most countries lifted the restriction requirement and coexisted with SARS-CoV-2. Thus, dietary behavior for preventing SARS-CoV-2 infection becomes an interesting issue on a daily basis. Coffee consumption is connected with reduced COVID-19 risk and correlated to COVID-19 severity. However, the mechanisms of coffee for the reduction of COVID-19 risk are still unclear. Results Here, we identified that coffee can inhibit multiple variants of the SARS-CoV-2 infection by restraining the binding of the SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2 (ACE2), and reducing transmembrane serine protease 2 (TMPRSS2) and cathepsin L (CTSL) activity. Then, we used the method of \"Here\" (HRMS-exploring-recombination-examining) and found that isochlorogenic acid A, B, and C of coffee ingredients showed their potential to inhibit SARS-CoV-2 infection (inhibitory efficiency 43–54%). In addition, decaffeinated coffee still preserves inhibitory activity against SARS-CoV-2. Finally, in a human trial of 64 subjects, we identified that coffee consumption (approximately 1–2 cups/day) is sufficient to inhibit infection of multiple variants of SARS-CoV-2 entry, suggesting coffee could be a dietary strategy to prevent SARS-CoV2 infection. Conclusions This study verified moderate coffee consumption, including decaffeination, can provide a new guideline for the prevention of SARS-CoV-2. Based on the results, we also suggest a coffee-drinking plan for people to prevent infection in the post-COVID-19 era.
Development of a Highly Sensitive Glycan Microarray for Quantifying AFP-L3 for Early Prediction of Hepatitis B Virus–Related Hepatocellular Carcinoma
The α-fetoprotein fraction L3 (AFP-L3), which is synthesized by malignant cells and incorporates a fucosylated oligosaccharide, has been investigated as a diagnostic and prognostic marker for hepatocellular carcinoma (HCC). Quantification of AFP-L3 by conventional enzyme-linked immunosorbent assay (ELISA) has not always produced reliable results for serum samples with low AFP, and thus we evaluated the clinical utility of quantifying AFP-L3 using a new and highly sensitive glycan microarray assay. Sera from 9 patients with chronic hepatitis B and 32 patients with hepatitis B virus (HBV)-related HCC were tested for AFP-L3 level using the glycan microarray. Additionally, we compared receiver operator characteristic curves for the ELISA and glycan microarray methods for determination of the AFP-L3: AFP-L1 ratio in patient samples. This ratio was calculated for 8 HCC patients who underwent transarterial embolization therapy pre- or post-treatment with AFP-L3. Glycan microarrays showed that the AFP-L3 ratio of HBV-related HCC patients was significantly higher than that measured for chronic hepatitis B patients. Overall parameters for estimating AFP-L3% in HCC samples were as follows: sensitivity, 53.13%; specificity, 88.89%; and area under the curve, 0.75. The elevated AFP-L3% in the 8 patients with HBV-related HCC was strongly associated with HCC progression. Following one month of transarterial embolization therapy, the relative mean AFP-L3% decreased significantly. In addition, we compared Fut8 gene expression between paired tumor and non-tumor tissues from 24 patients with HBV-related HCC. The Fut8 mRNA expression was significantly increased in tumorous tissues in these patients than that in non-tumor tissue controls. Higher expression of Fut8 mRNA in tumorous tissues in these patients was associated with poor differentiation than well and moderate differentiation. Our results describe a new glycan microarray for the sensitive and rapid quantification of fucosylated AFP; this method is potentially applicable to screening changes in AFP-L3 level for assessment of HCC progression.
Smurf2‐mediated degradation of EZH2 enhances neuron differentiation and improves functional recovery after ischaemic stroke
EZH2 plays an important role in stem cell renewal and maintenance by inducing gene silencing via its histone methyltransferase activity. Previously, we showed that EZH2 downregulation enhances neuron differentiation of human mesenchymal stem cells (hMSCs); however, the underlying mechanisms of EZH2‐regulated neuron differentiation are still unclear. Here, we identify Smurf2 as the E3 ubiquitin ligase responsible for the polyubiquitination and proteasome‐mediated degradation of EZH2, which is required for neuron differentiation. A ChIP‐on‐chip screen combined with gene microarray analysis revealed that PPARγ was the only gene involved in neuron differentiation with significant changes in both its modification and expression status during differentiation. Moreover, knocking down PPARγ prevented cells from undergoing efficient neuron differentiation. In animal model, rats implanted with intracerebral EZH2‐knocked‐down hMSCs or hMSCs plus treatment with PPARγ agonist (rosiglitazone) showed better improvement than those without EZH2 knockdown or rosiglitazone treatment after a stroke. Together, our results support Smurf2 as a regulator of EZH2 turnover to facilitate PPARγ expression, which is specifically required for neuron differentiation, providing a molecular mechanism for clinical applications in the neurodegenerative diseases. Graphical Abstract Smurf2‐mediated degradation of EZH2 enhances neuronal differentiation of human mesenchymal stem cells (hMSCs). This enables expression of PPARgamma in hMSCs, which when implanted improve recovery in a rat model of stroke.
Prospects of Coffee Leaf against SARS-CoV-2 Infection
In the current climate, many countries are in dire need of effective preventive methods to curb the Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) pandemic. The purpose of this research is to screen and explore natural plant extracts that have the potential to against SARS-CoV-2 and provide alternative options for SARS-CoV-2 prevention and hand sanitizer or spray-like disinfectants. We first used Spike-ACE2 ELISA and TMPRSS2 fluorescence resonance energy transfer (FRET) assays to screen extracts from agricultural by-products from Taiwan with the potential to impede SARS-CoV-2 infection. Next, the SARS-CoV-2 pseudo-particles (Vpp) infection assay was tested to validate the effectiveness. We identified an extract from coffee leaf ( ), a natural plant that effectively inhibited wild-type SARS-CoV-2, and five Variants of Concern (Alpha, Beta, Gamma, Delta, and Omicron strain) from entering host cells. In an attempt to apply coffee leaf extract for hand sanitizer or spray-like disinfectants, we designed a skin-like gelatin membrane experiment. We showed that the high concentration of coffee leaf extract on the skin surface could block SARS-CoV-2 into cells more potently than 75% Ethanol, a standard disinfectant to inactivate SARS-CoV-2. Finally, LC-HRMS analysis was used to identify compounds such as caffeine, chlorogenic acid (CGA), quinic acid, and mangiferin that are associated with an anti-SARS-CoV-2 activity. Our results demonstrated that coffee leaf extract, an agricultural by-product effectively inhibits SARS-CoV-2 Vpp infection through an ACE2-dependent mechanism and may be utilized to develop products against SARS-CoV-2 infection.
Cancer-Associated Carbohydrate Antigens as Potential Biomarkers for Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is one of the most common human malignancies. Therefore, developing the early, high-sensitivity diagnostic biomarkers to prevent HCC is urgently needed. Serum a-fetoprotein (AFP), the clinical biomarker in current use, is elevated in only ~60% of patients with HCC; therefore, identification of additional biomarkers is expected to have a significant impact on public health. In this study, we used glycan microarray analysis to explore the potential diagnostic value of several cancer-associated carbohydrate antigens (CACAs) as biomarkers for HCC. We used glycan microarray analysis with 58 different glycan analogs for quantitative comparison of 593 human serum samples (293 HCC samples; 133 chronic hepatitis B virus (HBV) infection samples, 134 chronic hepatitis C virus (HCV) infection samples, and 33 healthy donor samples) to explore the diagnostic possibility of serum antibody changes as biomarkers for HCC. Serum concentrations of anti-disialosyl galactosyl globoside (DSGG), anti-fucosyl GM1 and anti-Gb2 were significantly higher in patients with HCC than in chronic HBV infection individuals not in chronic HCV infection patients. Overall, in our study population, the biomarker candidates DSGG, fucosyl GM1 and Gb2 of CACAs achieved better predictive sensitivity than AFP. We identified potential biomarkers suitable for early detection of HCC. Glycan microarray analysis provides a powerful tool for high-sensitivity and high-throughput detection of serum antibodies against CACAs, which may be valuable serum biomarkers for the early detection of persons at high risk for HCC.
FGFR3-induced Y158 PARP1 phosphorylation promotes PARP inhibitor resistance via BRG1/MRE11-mediated DNA repair in breast cancer models
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) are used to treat BRCA-mutated (BRCAm) cancer patients; however, resistance has been observed. Therefore, biomarkers to indicate PARPi resistance and combination therapy to overcome that are urgently needed. We identified a high prevalence of activated FGF receptor 3 (FGFR3) in BRCAm triple-negative breast cancer (TNBC) cells with intrinsic and acquired PARPi resistance. FGFR3 phosphorylated PARP1 at tyrosine 158 (Y158) to recruit BRG1 and prolong chromatin-loaded MRE11, thus promoting homologous recombination (HR) to enhance PARPi resistance. FGFR inhibition prolonged PARP trapping and synergized with PARPi in vitro and in vivo. High-level PARP1 Y158 phosphorylation (p-Y158) positively correlated with PARPi resistance in TNBC patient-derived xenograft models, and in PARPi-resistant TNBC patient tumors. These findings reveal that PARP1 p-Y158 facilitates BRG1-mediated HR to resolve the PARP-DNA complex, and PARP1 p-Y158 may indicate PARPi resistance that can be relieved by combining FGFR inhibitors (FGFRis) with PARPis. In summary, we show that FGFRi restores PARP trapping and PARPi antitumor efficacy in PARPi-resistant breast cancer by decreasing HR through the PARP1 p-Y158/BRG1/MER11 axis, suggesting that PARP1 p-Y158 is a biomarker for PARPi resistance that can be overcome by combining FGFRis with PARPis.
FGFRB-induced Y158 PARP1 phosphorylation promotes PARP inhibitor resistance via BRG1/MRE11-mediated DNA repair in breast cancer models
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) are used to treat BRCA-mutated (BRCAm) cancer patients; however, resistance has been observed. Therefore, biomarkers to indicate PARPi resistance and combination therapy to overcome that are urgently needed. We identified a high prevalence of activated FGF receptor 3 (FGFR3) in BRCAm triple-negative breast cancer (TNBC) cells with intrinsic and acquired PARPi resistance. FGFR3 phosphorylated PARP1 at tyrosine 158 (Y158) to recruit BRG1 and prolong chromatin-loaded MRE11, thus promoting homologous recombination (HR) to enhance PARPi resistance. FGFR inhibition prolonged PARP trapping and synergized with PARPi in vitro and in vivo. High-level PARP1 Y158 phosphorylation (p-Y158) positively correlated with PARPi resistance in TNBC patient-derived xenograft models, and in PARPi-resistant TNBC patient tumors. These findings reveal that PARP1 p-Y158 facilitates BRG1-mediated HR to resolve the PARP-DNA complex, and PARP1 p-Y158 may indicate PARPi resistance that can be relieved by combining FGFR inhibitors (FGFRis) with PARPis. In summary, we show that FGFRi restores PARP trapping and PARPi antitumor efficacy in PARPi- resistant breast cancer by decreasing HR through the PARP1 p-Y158/BRG1/MER11 axis, suggesting that PARP1 p-Y158 is a biomarker for PARPi resistance that can be overcome by combining FGFRis with PARPis.