Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
382
result(s) for
"Wu, Chin-Lee"
Sort by:
Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses
2023
The treatment of low-risk primary prostate cancer entails active surveillance only, while high-risk disease requires multimodal treatment including surgery, radiation therapy, and hormonal therapy. Recurrence and development of metastatic disease remains a clinical problem, without a clear understanding of what drives immune escape and tumor progression. Here, we comprehensively describe the tumor microenvironment of localized prostate cancer in comparison with adjacent normal samples and healthy controls. Single-cell RNA sequencing and high-resolution spatial transcriptomic analyses reveal tumor context dependent changes in gene expression. Our data indicate that an immune suppressive tumor microenvironment associates with suppressive myeloid populations and exhausted T-cells, in addition to high stromal angiogenic activity. We infer cell-to-cell relationships from high throughput ligand-receptor interaction measurements within undissociated tissue sections. Our work thus provides a highly detailed and comprehensive resource of the prostate tumor microenvironment as well as tumor-stromal cell interactions.
The immune suppressive tumour microenvironment drives recurrence and metastatic disease in prostate cancer. Here authors provide a detailed analysis of the microenvironment via single cell RNA sequencing and high-resolution spatial transcriptomics to identify tumour-dependent changes compared to healthy tissue.
Journal Article
Prediction of non-muscle invasive bladder cancer recurrence using machine learning of quantitative nuclear features
2022
Non-muscle invasive bladder cancer (NMIBC) generally has a good prognosis; however, recurrence after transurethral resection (TUR), the standard primary treatment, is a major problem. Clinical management after TUR has been based on risk classification using clinicopathological factors, but these classifications are not complete. In this study, we attempted to predict early recurrence of NMIBC based on machine learning of quantitative morphological features. In general, structural, cellular, and nuclear atypia are evaluated to determine cancer atypia. However, since it is difficult to accurately quantify structural atypia from TUR specimens, in this study, we used only nuclear atypia and analyzed it using feature extraction followed by classification using Support Vector Machine and Random Forest machine learning algorithms. For the analysis, 125 patients diagnosed with NMIBC were used; data from 95 patients were randomly selected for the training set, and data from 30 patients were randomly selected for the test set. The results showed that the support vector machine-based model predicted recurrence within 2 years after TUR with a probability of 90% and the random forest-based model with probability of 86.7%. In the future, the system can be used to objectively predict NMIBC recurrence after TUR.
Journal Article
RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance
by
Wu, Chin-Lee
,
Broderick, Katherine T.
,
Arora, Kshitij S.
in
Androgen Antagonists - pharmacology
,
Androgen Antagonists - therapeutic use
,
Animals
2015
Prostate cancer is initially responsive to androgen deprivation, but the effectiveness of androgen receptor (AR) inhibitors in recurrent disease is variable. Biopsy of bone metastases is challenging; hence, sampling circulating tumor cells (CTCs) may reveal drug-resistance mechanisms. We established single-cell RNA-sequencing (RNA-Seq) profiles of 77 intact CTCs isolated from 13 patients (mean six CTCs per patient), by using microfluidic enrichment. Single CTCs from each individual display considerable heterogeneity, including expression of AR gene mutations and splicing variants. Retrospective analysis of CTCs from patients progressing under treatment with an AR inhibitor, compared with untreated cases, indicates activation of noncanonical Wnt signaling (P = 0.0064). Ectopic expression of Wnt5a in prostate cancer cells attenuates the antiproliferative effect of AR inhibition, whereas its suppression in drug-resistant cells restores partial sensitivity, a correlation also evident in an established mouse model. Thus, single-cell analysis of prostate CTCs reveals heterogeneity in signaling pathways that could contribute to treatment failure.
Journal Article
Insulin Stimulates Adipogenesis through the Akt-TSC2-mTORC1 Pathway
2009
The signaling pathways imposing hormonal control over adipocyte differentiation are poorly understood. While insulin and Akt signaling have been found previously to be essential for adipogenesis, the relative importance of their many downstream branches have not been defined. One direct substrate that is inhibited by Akt-mediated phosphorylation is the tuberous sclerosis complex 2 (TSC2) protein, which associates with TSC1 and acts as a critical negative regulator of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). Loss of function of the TSC1-TSC2 complex results in constitutive mTORC1 signaling and, through mTORC1-dependent feedback mechanisms and loss of mTORC2 activity, leads to a concomitant block of Akt signaling to its other downstream targets.
We find that, despite severe insulin resistance and the absence of Akt signaling, TSC2-deficient mouse embryo fibroblasts and 3T3-L1 pre-adipocytes display enhanced adipocyte differentiation that is dependent on the elevated mTORC1 activity in these cells. Activation of mTORC1 causes a robust increase in the mRNA and protein expression of peroxisome proliferator-activated receptor gamma (PPARgamma), which is the master transcriptional regulator of adipocyte differentiation. In examining the requirements for different Akt-mediated phosphorylation sites on TSC2, we find that only TSC2 mutants lacking all five previously identified Akt sites fully block insulin-stimulated mTORC1 signaling in reconstituted Tsc2 null cells, and this mutant also inhibits adipogenesis. Finally, renal angiomyolipomas from patients with tuberous sclerosis complex contain both adipose and smooth muscle-like components with activated mTORC1 signaling and elevated PPARgamma expression.
This study demonstrates that activation of mTORC1 signaling is a critical step in adipocyte differentiation and identifies TSC2 as a primary target of Akt driving this process. Therefore, the TSC1-TSC2 complex regulates the differentiation of mesenchymal cell lineages, at least in part, through its control of mTORC1 activity and PPARgamma expression.
Journal Article
A HIF1α-GPD1 feedforward loop inhibits the progression of renal clear cell carcinoma via mitochondrial function and lipid metabolism
by
Xie, Qingling
,
Zhang, Hui
,
Liang, Yuxiang
in
Apoptosis
,
Biomedical and Life Sciences
,
Biomedicine
2021
Background
Hypoxia signaling, especially the hypoxia inducible factor (HIF) pathway, is a major player in clear cell renal cell carcinoma (ccRCC), which is characterized by disorders in lipid and glycogen metabolism. However, the interaction between hypoxia and lipid metabolism in ccRCC progression is still poorly understood.
Methods
We used bioinformatic analysis and discovered that glycerol-3-phosphate dehydrogenase 1 (GPD1) may play a key role in hypoxia and lipid metabolism pathways in ccRCC. Tissue microarray, IHC staining, and survival analysis were performed to evaluate clinical function. In vitro and in vivo assays showed the biological effects of GPD1 in ccRCC progression.
Results
We found that the expression of GPD1 was downregulated in ccRCC tissues, and overexpression of GPD1 inhibited the progression of ccRCC both in vivo and in vitro. Furthermore, we demonstrated that hypoxia inducible factor-1α (HIF1α) directly regulates GPD1 at the transcriptional level, which leads to the inhibition of mitochondrial function and lipid metabolism. Additionally, GPD1 was shown to inhibit prolyl hydroxylase 3 (PHD3), which blocks prolyl-hydroxylation of HIF1α and subsequent proteasomal degradation, and thus reinforces the inhibition of mitochondrial function and phosphorylation of AMPK via suppressing glycerol-3-phosphate dehydrogenase 2 (GPD2).
Conclusions
This study not only demonstrated that HIF1α-GPD1 forms a positive feedforward loop inhibiting mitochondrial function and lipid metabolism in ccRCC, but also discovered a new mechanism for the molecular basis of HIF1α to inhibit tumor activity, thus providing novel insights into hypoxia-lipid-mediated ccRCC therapy.
Journal Article
Renal Cell Carcinoma in Tuberous Sclerosis Complex
by
Cornejo, Kristine M.
,
Henske, Elizabeth P.
,
Wu, Chin-Lee
in
Adult
,
Age of Onset
,
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics
2021
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder in which renal manifestations are prominent. There are three major renal lesions in TSC: angiomyolipomas, cysts, and renal cell carcinoma (RCC). Major recent advances have revolutionized our understanding of TSC-associated RCC, including two series that together include more than 100 TSC-RCC cases, demonstrating a mean age at onset of about 36 years, tumors in children as young as 7, and a striking 2:1 female predominance. These series also provide the first detailed understanding of the pathologic features of these distinctive tumors, which include chromophobe-like features and eosinophilia, with some of the tumors unclassified. This pathologic heterogeneity is distinctive and reminiscent of the pathologic heterogeneity in Birt–Hogg–Dube-associated RCC, which also includes chromophobe-like tumors. Additional advances include the identification of sporadic counterpart tumors that carry somatic TSC1/TSC2/mTOR mutations. These include unclassified eosinophilic tumors, eosinophilic solid cystic RCC (ESC-RCC), and RCC with leiomyomatous stroma (RCCLMS). A variety of epithelial renal neoplasms have been identified both in patients with tuberous sclerosis complex (TSC) and in the nonsyndromic setting associated with somatic mutations in the TSC1 and TSC2 genes. Interestingly, whether tumors are related to a germline or somatic TSC1/2 mutation, these tumors often display similar morphologic and immunophenotypic features. Finally, recent work has identified molecular links between TSC and BHD-associated tumors, involving the TFEB/TFE3 transcription factors.
Journal Article
A transcriptional metastatic signature predicts survival in clear cell renal cell carcinoma
2022
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer in adults. When ccRCC is localized to the kidney, surgical resection or ablation of the tumor is often curative. However, in the metastatic setting, ccRCC remains a highly lethal disease. Here we use fresh patient samples that include treatment-naive primary tumor tissue, matched adjacent normal kidney tissue, as well as tumor samples collected from patients with bone metastases. Single-cell transcriptomic analysis of tumor cells from the primary tumors reveals a distinct transcriptional signature that is predictive of metastatic potential and patient survival. Analysis of supporting stromal cells within the tumor environment demonstrates vascular remodeling within the endothelial cells. An in silico cell-to-cell interaction analysis highlights the
CXCL9/CXCL10-CXCR3
axis and the
CD70-CD27
axis as potential therapeutic targets. Our findings provide biological insights into the interplay between tumor cells and the ccRCC microenvironment.
Metastatic clear cell renal cell carcinoma has a poor prognosis. Here, the authors use single cell RNA-seq to show a distinct gene expression signature in the primary tumour of metastatic patients, and highlights immune cell receptor interactions as potential therapeutic targets.
Journal Article
Novel immune‐related signature for risk stratification and prognosis in prostatic adenocarcinoma
2021
A substantial proportion of prostatic adenocarcinoma (PRAD) patients experience biochemical failure (BCF) after radical prostatectomy (RP). The immune microenvironment plays a vital role in carcinogenesis and the development of PRAD. This study aimed to identify a novel immune‐related gene (IRG)‐based signature for risk stratification and prognosis of BCF in PRAD. Weighted gene coexpression network analysis was carried out to identify a BCF‐related module in a discovery cohort of patients who underwent RP at the Massachusetts General Hospital. The median follow‐up time was 70.32 months. Random forest and multivariate stepwise Cox regression analyses were used to identify an IRG‐based signature from the specific module. Risk plot analyses, Kaplan‐Meier curves, receiver operating characteristic curves, univariate and multivariate Cox regression analyses, stratified analysis, and Harrell’s concordance index were used to assess the prognostic value and predictive accuracy of the IRG‐based signature in the internal discovery cohort; The Cancer Genome Atlas database was used as a validation cohort. Tumor immune estimation resource database analysis and CIBERSORT algorithm were used to assess the immunophenotype of PRAD. A novel IRG‐based signature was identified from the specific module. Five IRGs (BUB1B, NDN, NID1, COL4A6, and FLRT2) were verified as components of the risk signature. The IRG‐based signature showed good prognostic value and predictive accuracy in both the discovery and validation cohorts. Infiltrations of various immune cells were significantly different between low‐risk and high‐risk groups in PRAD. We identified a novel IRG‐based signature that could function as an index for assessing tumor immune status and risk stratification in PRAD. This study aimed to identify a novel immune‐related gene (IRG)‐based signature for risk stratification and prognosis of biochemical failure in prostatic adenocarcinoma (PRAD). We identified an IRG‐based signature using weighted gene coexpression network analysis and random forest and multivariable stepwise Cox regression analyses and assessed the prognostic value and predictive accuracy of the IRG‐based signature in both internal and external cohorts. This novel IRG‐based signature could function as an index for assessing tumor immune status and risk stratification in PRAD. In addition, we analyzed the immune microenvironment of PRAD and identified immune cell changes associated with high‐risk PRAD.
Journal Article
Standardization of reporting discontinuous tumor involvement in prostatic needle biopsy: a systematic review
2021
Discontinuous tumor involvement (DTI) is a not uncommon finding in the tumor in prostate needle core biopsies undertaken for diagnosis of prostate cancer (PCa). The objective of this review is to establish a clear definition of DTI in order to provide a standardized method of measurement which reliably reflects pathologic features and disease progression following radical prostatectomy (RP). A systematic literature search was performed using PubMed up to March 2020 to identify studies of PCa patients which included needle biopsies containing DTI and matched subsequent RP treatment with or without follow-up information. The methodology and quality of reporting of DTI are reviewed, compared, and summarized. DTI is a frequent finding in diagnostic biopsy for PCa (up to 30%). Six studies were compared by methods of measurement used for predicting pathologic features and outcomes which are observed in subsequent RP. In most cases with DTI (> 90%), intervening benign tissue in the tumor core was less than 5 mm. DTI found in the biopsy was likely to be associated with a single, irregular tumor nodule going in and out of the plane of the section, but DTI was not associated with multiple small foci of the tumor. Immunohistochemistry (IHC) also demonstrated that about 75% of cases of DTI shared an IHC profile which supports the concept that DTI most likely comes from a homogeneous tumor nodule. Furthermore, DTI was associated with positive surgical margin (PSM) and bilateral tumor in RP specimens. Compared to additive measurement (with the subtraction of intervening benign tissue), linear measurement (including intervening benign tissue) of DTI was more accurately predictive of aggressive disease in the RP including higher pT stage, PSM, and greater actual extent of the tumor. However, the advantage of linear measurement was lost in cases where there was an upgrade from the biopsy to the RP which may result from undersampling. For cases with either very small tumor foci or very extensive cancer volume, no difference was observed in these two methods of measurement. DTI in core biopsies may represent undersampling of a larger irregular nodule but likely does not result from multifocality and is similarly unlikely to represent multiclonality. Linear measurement of DTI was more accurately predictive of post-RP pathologic findings and oncologic prognosis. This method should be applied for patient selection for AS.
Journal Article
CIRBP is a novel oncogene in human bladder cancer inducing expression of HIF-1α
2018
Cold-inducible RNA binding protein (CIRBP) has been reported to be associated with distinct tumorigenesis. In this study, we investigated the role of CIRBP in human bladder cancer (BCa), indicating that CIRBP is overexpressed in BCa tissues and cell lines to promote proliferation and migration. Moreover, CIRBP could induce expression of HIF-1α via binding to the 3′-UTR of its mRNA to increase the mRNA stability in BCa cells. Furthermore, we demonstrated that PTGIS is a HIF-1α targeted gene, a major regulator in hypoxic cancer progression by activating transcription of various oncogenes. Our results also suggested that overexpression of HIF-1α may suppress the expression of PTGIS in BCa cells, by binding to HRE sequence at the promoter region of PTGIS. In addition, we found a strongly downregulation of PTGIS in BCa tissue and transcriptionally inhibited by HIF-1α in BCa cells, which could be triggered by its DNA methylation. Further result suggested that knockdown of CIRBP could promote the expression of PTGIS, meanwhile knockdown of PTGIS could partially rescue CIRBP-deficiency induced inhibition of migration and proliferation in BCa cells. Taken together, our study indicated that CIRBP could be a novel oncogene in human bladder cancer inducing transcription of HIF-1α, which could inhibit expression of methylated PTGIS.
Journal Article