Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
787
result(s) for
"Wu, Yiwen"
Sort by:
In Situ Construction a Stable Protective Layer in Polymer Electrolyte for Ultralong Lifespan Solid‐State Lithium Metal Batteries
by
Yuan, Zhanxiang
,
Zhu, Min
,
Ji, Shaomin
in
dendrite‐free
,
Electrolytes
,
interface construction
2022
Solid‐state lithium metal batteries (SLMBs) are attracting enormous attention due to their enhanced safety and high theoretical energy density. However, the alkali lithium with high reducibility can react with the solid‐state electrolytes resulting in the inferior cycle lifespan. Herein, inspired by the idea of interface design, the 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethanesulfonyl) imide as an initiator to generate an artificial protective layer in polymer electrolyte is selected. Time‐of‐flight secondary ion mass spectrometry and X‐ray photoelectron spectroscopy reveal the stable solid electrolyte interface (SEI) is in situ formed between the electrolyte/Li interface. Scanning electron microscopy (SEM) images demonstrate that the constructed SEI can promote homogeneous Li deposition. As a result, the Li/Li symmetrical cells enable stable cycle ultralong‐term for over 4500 h. Moreover, the as‐prepared LiFePO4/Li SLMBs exhibit an impressive ultra‐long cycle lifespan over 1300 cycles at 1 C, as well as 1600 cycles at 0.5 C with a capacity retention ratio over 80%. This work offers an effective strategy for the construction of the stable electrolyte/Li interface, paving the way for the rapid development of long lifespan SLMBs.
A stable solid electrolyte interface layer with multiple phases of LiF, Li2Sx, and Li3N is successfully in situ formed on the electrolyte/Li surface with the ionic liquid of 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethanesulfonyl) imide as the initiator. Impressively, the LiFePO4/PIA‐SPE/Li solid‐state batteries exhibit admirable cyclic stabilities, and the current findings pave a new direction for fabricating long lifespan solid‐state lithium metal batteries.
Journal Article
Participation of Chinese NGOs in International Humanitarian Aid: The Example of Peaceland Foundation
2025
NGOs from developing countries are playing an increasingly prominent role in international humanitarian aid, delivering more rapid and culturally informed responses. Despite this trend, Chinese NGOs remain understudied. Peaceland Foundation is the only Chinese NGO actively involved in front-line humanitarian rescue which holds ECOSOC consultative status, making it a compelling case for operational analysis. This study employs a mixed-methods design, combining document analysis of internal reports and literature with semi-structured interviews. We identify a three-phase operational model: pre-deployment assessment (“before”), on-site coordination (“during”), and post-mission programming (“after”). Our findings show that Peaceland Foundation has developed substantial experience in key operational areas, including decision-making, information acquisition and processing, local cooperation, community awareness-raising and capacity-building, as well as organizational internationalization. However, gaps remain in its pre-operation risk assessment and in the implementation of long-term impact tracking mechanisms. We further argue that for NGOs from developing countries, an initial strategic priority is to enhance visibility and credibility through active engagement in humanitarian aid. We recommend that future research and practice focus on strengthening partnerships among NGOs from developing countries and on establishing robust systems for long-term impact evaluation.
Journal Article
Investigation on Antioxidant Activity and Different Metabolites of Mulberry (Morus spp.) Leaves Depending on the Harvest Months by UPLC–Q-TOF-MS with Multivariate Tools
2023
The changes in active components in mulberry leaves harvested in different months and their antioxidant activities were investigated. Ultra-high-performance liquid chromatography–tandem quadrupole time-of-flight mass spectrometry (UPLC–Q-TOF-MS) with multivariate statistical tools was used to investigate the chemical constituents in the extracts of mulberry leaves. The results indicated that mulberry leaves were rich in phenolic acids, flavonoids, organic acids, and fatty acid derivatives. In addition, 25 different compounds were identified in the different batches of mulberry leaves. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was measured to evaluate the in vitro antioxidant activities of mulberry leaves. Among the four batches, batch A, harvested in December, exhibited the strongest DPPH radical-scavenging activity, while batch B, harvested in March, showed the weakest activity. This was related to the total phenolic content in the mulberry leaves of each batch. The optimal harvest time of mulberry leaves greatly influences the bioactivity and bioavailability of the plant.
Journal Article
A millimeter-scale insight into formation mechanism of lacustrine black shale in tephra deposition background
2022
To reveal the role of tephra in the deposition of black shale during periods of volcanic activity, we performed lithostratigraphic and geochemical analyses on 14 horizontally sliced samples drilled from a 2-cm-thick black shale interval in the lower Ch7 Member of the Upper Triassic Yanchang Formation, southern Ordos Basin. Results indicate that fewer plankton is preserved during tephra deposition than during periods of volcanic quiescence. With the decrease of volcanic activities and tephra deposition, the abundance of redox-sensitive trace elements (RSTEs) and biolimiting elements increases, while terrigenous elements gradually decrease, resulting in the improvement of organic matter (OM) preservation. Paleoenvironmental proxies suggest that the climate during the Late Triassic was generally warm and humid. However, subsequent intense volcanic eruptions may have caused climatic cooling that affected the water column, resulting in enhanced salinity, primary production, water stratification, and bottom water anoxia, leading to enhanced organic carbon production and preservation. Primary productivity and redox conditions controlled the accumulation of organic carbon. Although physical and chemical reactions relating to the deposition of tephra into water are short-lived, climate change induced by volcanic eruptions is the critical cause of black shale formation.
Journal Article
Photophobia in neurologic disorders
2017
Photophobia is a common symptom seen in many neurologic disorders, however, its pathophysiology remains unclear. Even the term is ambiguous. In this paper, we review the epidemiology and clinical manifestations of photophobia in neurological disorders, including primary headache, blepharospasm, progressive supranuclear palsy, and traumatic brain injury, discuss the definition, etiology and pathogenesis, and summarize practical methods of diagnosis and treatment.
Journal Article
Puerarin Attenuates Oxidative Stress and Ferroptosis via AMPK/PGC1α/Nrf2 Pathway after Subarachnoid Hemorrhage in Rats
2022
Puerarin was shown to exert anti-oxidative and anti-ferroptosis effects in multiple diseases. The goal of this study was to explore the neuroprotective effect of puerarin on early brain injury (EBI) after subarachnoid hemorrhage (SAH) in rats. A total of 177 adult male Sprague Dawley rats were used. SAH was included via endovascular perforation. Intranasal puerarin or intracerebroventricular dorsomorphin (AMPK inhibitor) and SR18292 (PGC1α inhibitor) were administered. The protein levels of pAMPK, PGC1α, Nrf2, 4HNE, HO1, MDA, ACSL4, GSSG, and iron concentration in the ipsilateral hemisphere were significantly increased, whereas SOD, GPX4, and GSH were decreased at 24 h after SAH. Moreover, puerarin treatment significantly increased the protein levels of pAMPK, PGC1α, Nrf2, HO1, SOD, GPX4, and GSH, but decreased the levels of 4HNE, MDA, ACSL4, GSSG, and iron concentration in the ipsilateral hemisphere at 24 h after SAH. Dorsomorphin or SR18292 partially abolished the beneficial effects of puerarin exerted on neurological dysfunction, oxidative stress injury, and ferroptosis. In conclusion, puerarin improved neurobehavioral impairments and attenuated oxidative-stress-induced brain ferroptosis after SAH in rats. The neuroprotection acted through the activation of the AMPK/PGC1α/Nrf2-signaling pathway. Thus, puerarin may serve as new therapeutics against EBI in SAH patients.
Journal Article
Emerging roles of noncoding RNAs in human cancers
2023
Studies have found that RNA encoding proteins only account for a small part of the total number, most RNA is non-coding RNA, and non-coding RNA may affect the occurrence and development of human cancers by affecting gene expression, therefore play an important role in human pathology. At present, ncRNAs studied include miRNA, circRNA, lncRNA, piRNA, and snoRNA, etc. After decades of research, the basic role of these ncRNAs in many cancers has been clear. As far as we know, the role of miRNAs in cancer is one of the hottest research directions, however, it is also found that the imbalance of ncRNAs will affect the occurrence of gastric cancer, breast cancer, lung cancer, meanwhile, it may also affect the prognosis of these cancers. Therefore, the study of ncRNAs in cancers may help to find new cancer diagnostic and treatment methods. Here, we reviewed the biosynthesis and characteristics of miRNA, cricRNA, and lncRNA etc., their roles in human cancers, as well as the mechanism through which these ncRNAs affect human cancers.
Journal Article
Amyloid precursor protein–mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration
by
Fang, Fang
,
Sawa, Mariko
,
Mobley, William C.
in
Alzheimer Disease - genetics
,
Alzheimer Disease - metabolism
,
Alzheimer Disease - pathology
2016
The endosome/lysosome pathway is disrupted early in the course of both Alzheimer's disease (AD) and Down syndrome (DS); however, it is not clear how dysfunction in this pathway influences the development of these diseases. Herein, we explored the cellular and molecular mechanisms by which endosomal dysfunction contributes to the pathogenesis of AD and DS. We determined that full-length amyloid precursor protein (APP) and its β-C-terminal fragment (β-CTF) act though increased activation of Rab5 to cause enlargement of early endosomes and to disrupt retrograde axonal trafficking of nerve growth factor (NGF) signals. The functional impacts of APP and its various products were investigated in PC12 cells, cultured rat basal forebrain cholinergic neurons (BFCNs), and BFCNs from a mouse model of DS. We found that the full-length wild-type APP (APPWT) and β-CTF both induced endosomal enlargement and disrupted NGF signaling and axonal trafficking. β-CTF alone induced atrophy of BFCNs that was rescued by the dominant-negative Rab5 mutant, Rab5S34N. Moreover, expression of a dominant-negative Rab5 construct markedly reduced APP-induced axonal blockage in Drosophila. Therefore, increased APP and/or β-CTF impact the endocytic pathway to disrupt NGF trafficking and signaling, resulting in trophic deficits in BFCNs. Our data strongly support the emerging concept that dysregulation of Rab5 activity contributes importantly to early pathogenesis of AD and DS.
Journal Article
Novel insights into the roles of migrasome in cancer
2024
Cell migration, a hallmark of cancer malignancy, plays a critical role in cancers. Improperly initiated or misdirected cell migration can lead to invasive metastatic cancer. Migrasomes are newly discovered vesicular cellular organelles produced by migrating cells and depending on cell migration. Four marker proteins [NDST1 (bifunctionalheparan sulfate N-deacetylase/N-sulfotransferase 1), EOGT (Epidermal growth factor domains pecific O-linked N-acetylglucosaminetransferase), CPQ (carboxypeptidase Q), and PIGK (phosphatidylinositol glycan anchor biosynthesis, class K)] of migrasomes were successfully identified. There are three marker proteins (NDST1, PIGK, and EOGT) of migrasome expressed in cancer. In this review, we will discuss the process of migrasome discovery, the formation of migrasome, the possible functions of migrasome, and the differences between migrasomes and exosomes, especially, the biological functions of migrasome marker proteins in cancer, and discuss some possible roles of migrasomes in cancer. We speculate that migrasomes and migracytosis can play key roles in regulating the development of cancer.
Journal Article
A bi-objective optimization framework for configuration of battery energy storage system considering energy loss and economy
2025
To address a bi-objective optimization configuration problem of battery energy storage system (BESS) in distributed energy system (DES) considering energy loss and economy, a perturbation and observation approach (P&O) is proposed in this article. First, in a DES, the configuration model of BESS is established. Then, a novel way is designed that transforming a bi-objective optimization problem into a single objective optimization problem with variable conditions. And the P&O process of the proposed method is presented. Finally, in a simulation case, compared with a single optimization objective of energy loss or economy, the P&O method improves 5.71-fold or 2.94-fold in each direction, respectively and effectively balances the contradiction between them. In addition, with the efficiency and electricity cost of BESS increasing, the rated capacity of BESS changes by approximately 10%. And the location is a key factor affecting the configuration scheme of BESS in DES.
Journal Article