Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
496 result(s) for "Wu, Yudong"
Sort by:
New-generation advanced PROTACs as potential therapeutic agents in cancer therapy
Proteolysis-targeting chimeras (PROTACs) technology has garnered significant attention over the last 10 years, representing a burgeoning therapeutic approach with the potential to address pathogenic proteins that have historically posed challenges for traditional small-molecule inhibitors. PROTACs exploit the endogenous E3 ubiquitin ligases to facilitate degradation of the proteins of interest (POIs) through the ubiquitin–proteasome system (UPS) in a cyclic catalytic manner. Despite recent endeavors to advance the utilization of PROTACs in clinical settings, the majority of PROTACs fail to progress beyond the preclinical phase of drug development. There are multiple factors impeding the market entry of PROTACs, with the insufficiently precise degradation of favorable POIs standing out as one of the most formidable obstacles. Recently, there has been exploration of new-generation advanced PROTACs, including small-molecule PROTAC prodrugs, biomacromolecule-PROTAC conjugates, and nano-PROTACs, to improve the in vivo efficacy of PROTACs. These improved PROTACs possess the capability to mitigate undesirable physicochemical characteristics inherent in traditional PROTACs, thereby enhancing their targetability and reducing off-target side effects. The new-generation of advanced PROTACs will mark a pivotal turning point in the realm of targeted protein degradation. In this comprehensive review, we have meticulously summarized the state-of-the-art advancements achieved by these cutting-edge PROTACs, elucidated their underlying design principles, deliberated upon the prevailing challenges encountered, and provided an insightful outlook on future prospects within this burgeoning field.
Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre, open-label, randomised, controlled, phase 3 trial
Despite therapeutic advances in HER2-positive metastatic breast cancer, resistance to trastuzumab inevitably develops. In the PHOEBE study, we aimed to assess the efficacy and safety of pyrotinib (an irreversible pan-HER inhibitor) plus capecitabine after previous trastuzumab. This is an open-label, randomised, controlled, phase 3 trial done at 29 hospitals in China. Patients with pathologically confirmed HER2-positive metastatic breast cancer, aged 18–70 years, who had an Eastern Cooperative Oncology Group performance status of 0 or 1, and had been previously treated with trastuzumab and taxanes were randomly assigned (1:1) to receive oral pyrotinib 400 mg or lapatinib 1250 mg once daily plus oral capecitabine 1000 mg/m2 twice daily on days 1–14 of each 21-day cycle. Randomisation was done via a centralised interactive web-response system with a block size of four or six and stratified by hormone receptor status and previous lines of chemotherapy for metastatic disease. The primary endpoint was progression-free survival according to masked independent central review. Efficacy and safety were assessed in all patients who received at least one dose of the study drugs. Results presented here are from a prespecified interim analysis. This study is registered with ClinicalTrials.gov, NCT03080805. Between July 31, 2017, and Oct 30, 2018, 267 patients were enrolled and randomly assigned. 134 patients received pyrotinib plus capecitabine and 132 received lapatinib plus capecitabine. At data cutoff of the interim analysis on March 31, 2019, median progression-free survival was significantly longer with pyrotinib plus capecitabine (12·5 months [95% CI 9·7–not reached]) than with lapatinib plus capecitabine (6·8 months [5·4–8·1]; hazard ratio 0·39 [95% CI 0·27–0·56]; one-sided p<0·0001). The most common grade 3 or worse adverse events were diarrhoea (41 [31%] in the pyrotinib group vs 11 [8%] in the lapatinib group) and hand–foot syndrome (22 [16%] vs 20 [15%]). Serious adverse events were reported for 14 (10%) patients in the pyrotinib group and 11 (8%) patients in the lapatinib group. No treatment-related deaths were reported in the pyrotinib group and one sudden death in the lapatinib group was considered treatment related. Pyrotinib plus capecitabine significantly improved progression-free survival compared with that for lapatinib plus capecitabine, with manageable toxicity, and can be considered an alternative treatment option for patients with HER2-positive metastatic breast cancer after trastuzumab and chemotherapy. Jiangsu Hengrui Medicine and National Key R&D Program of China. For the Chinese translation of the abstract see Supplementary Materials section.
Crucial biological functions of CCL7 in cancer
Chemokine (C-C motif) ligand 7 (CCL7), a CC chemokine, is a chemotactic factor and attractant for various kinds of leukocytes, including monocytes and neutrophils. CCL7 is widely expressed in multiple cell types and can participate in anti-inflammatory responses through binding to its receptors to mediate the recruitment of immune cells. Abnormal CCL7 expression is associated with certain immune diseases. Furthermore, CCL7 plays a pivotal role in tumorigenesis. CCL7 promotes tumor progression by supporting the formation of the tumor microenvironment and facilitating tumor invasion and metastasis, although some studies have suggested that CCL7 has tumor suppressor effects. In this review, we summarize the currently available information regarding the influence of CCL7 on tumors.
Mechanical characterization of lining under three-dimensional complex load during shield posture adjustment
The shield tunneling method is widely used in urban underpass construction. However, research on the mechanical characteristics of segments during construction is insufficient. Throughout the shield tunneling construction process, segments undergo a diverse range of loads, and their modes become complex. During the adjustment of the posture of the shield machine along a curved path, segments must withstand three-dimensional uneven loads from the shield tail brush and extrusion of the shield shell, in addition to conventional loads. Thus, this study delves into the mechanical characterization of the lining during shield posture adjustment. First, three-dimensional refined models of the longitudinal and circumferential joints were established to investigate their bending and shear mechanical properties. Using the joint and shield tail brush stiffness models, a nonlinear spring-connector-shell model was developed for the mechanical analysis of segments during posture adjustment. Subsequently, a three-dimensional segment load model was formulated for the construction period. The segment response under the influence of different posture adjustments was examined using a numerical model of a tunnel subjected to a complex three-dimensional load. Furthermore, a multistage model of the segment response under various posture adjustments was established. This model serves as a valuable reference for engineering applications.
Research on robust fault-tolerant control of the controllable suspension based on knowledge-data fusion driven
For the robust fault-tolerant control of the controllable suspension system, a control strategy driven by knowledge-data fusion is proposed. Firstly, the boundary fuzziness between perturbation type uncertainty and gain type fault is analyzed, and then a data-driven method is introduced to avoid the state estimation of system uncertainty and fault. The proximal policy optimization algorithm in reinforcement learning is selected to construct a “data control law”, to deal with uncertainty and fault. On the other hand, based on the classical sky-hook control, the “knowledge control law” for system performance optimization is designed, taking into account the nonlinear and non-stationary characteristics of the system. Furthermore, the dependency between robust fault tolerance and performance optimization control is revealed, and the two control laws are fused by numerical multiplication, to realize the performance matching optimization control of robust fault tolerance of controllable suspension system driven by knowledge-data fusion. Finally, the effectiveness and feasibility of the proposed method are verified by the simulation and real-time experiment of non-stationary excitation and near-stationary excitation under the combination of uncertainty and fault.
3-aryl-4-(3,4,5-trimethoxyphenyl)pyridines inhibit tubulin polymerisation and act as anticancer agents
A series of restricted 3-aryl-4-(3,4,5-trimethoxyphenyl)pyridines as novel tubulin polymerisation inhibitors was designed based on molecular docking. Compound , exhibited potent antiproliferative activity against HeLa, MCF-7, and A549 cell lines. Mechanism studies indicated that potently inhibited tubulin polymerisation and disrupted the microtubule dynamics of tubulin in HeLa cells. Moreover, could cause G2/M phase cell cycle arrest and apoptosis in HeLa cells. In addition, the prediction of physicochemical properties disclosed that conformed well to the Lipinski's rule of five. The initial results suggest that the 3-aryl-4-(3,4,5-trimethoxyphenyl)pyridines could serve as a promising scaffold for the development of novel anticancer drugs.
Accelerated Fatigue Test for Electric Vehicle Reducer Based on the SVR–FDS Method
The reducer serves as a pivotal component within the power transmission system of electric vehicles. On one hand, it bears the torque load within the power transmission system. On the other hand, it also endures the vibration load transmitted from other vehicle components. Over extended periods, these dynamic loads can cause fatigue damage to the reducer. Therefore, the reliability and durability of the reducer during use are very important for electric vehicles. In order to save time and economic costs, the durability of the reducer is often evaluated through accelerated fatigue testing. However, traditional approaches to accelerated fatigue tests typically only consider the time-domain characteristics of the load, which limits precision and reliability. In this study, an accelerated fatigue test method for electric vehicle reducers based on the SVR–FDS method is proposed to enhance the testing process and ensure the reliability of the results. By utilizing the support vector regression (SVR) model in conjunction with the fatigue damage spectrum (FDS) approach, this method offers a more accurate and efficient way to evaluate the durability of reducers. It has been proved that this method significantly reduces the testing period while maintaining the necessary level of test reliability. The accelerated fatigue test based on the SVR–FDS method represents a valuable approach for assessing the durability of electric vehicle reducers and offering insights into their long-term performance.
Discovery of an intermediate nematic state in a bilayer kagome metal ScV6Sn6
Nematicity, spontaneous breaking of rotational symmetry, is a ubiquitous phenomenon in correlated quantum matter. Here we show a phase transition in high-quality ScV 6 Sn 6 bilayer kagome metal at a temperature T * , occurring seven Kelvins below the charge density wave transition at T C D W , as indicated by thermodynamic, transport, and optical measurements. This emerging intermediate phase does not exhibit spontaneous time-reversal-symmetry breaking, as evidenced by zero-field Sagnac interferometry. However, it displays a strong, spontaneous in-plane anisotropy between T * and T C D W , revealed by transport and optical polarization rotation measurements. A pronounced depolarization effect detected by the Sagnac interferometer further confirms its nematic nature. Unlike AV 3 Sb 5 , this phase, alongside the recently discovered intra-unit cell nematic order at lower temperatures, presents a diverse landscape of nematicities at multiple length and temperature scales. Our findings highlight ScV 6 Sn 6 as a prime candidate for realizing symmetry-breaking phases driven by charge density competition, kagome physics, and Van Hove singularities. Nematicity, the spontaneous breaking of lattice rotational symmetry, plays an important role in kagome metals. Here, the authors report on a nematic phase within seven Kelvin below the charge density wave transition in the bilayer kagome metal ScV 6 Sn 6 .
The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7
Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3β, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1β, IL-6, JAG2, KCNJ2, MALT1, β-MHC, NF-κB, PCK1, PLCβ1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68 Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.
The potential of ARL4C and its-mediated genes in atherosclerosis and agent development
Foam cells are the risk factors for atherosclerosis. Recently, ARL4C, a member of the ADP-ribosylation factor family of GTP-binding proteins, was found to promote cholesterol efflux to decrease foam cell formation, suggesting that ARL4C may be a new promising target for the treatment of atherosclerosis. In fact, ARL4C regulated the expression of multiple atherosis-related genes, including ABCA1, ALDH1A3, ARF6, ENHO, FLNA, LRP6, OSBPL5, Snail2, and SOX2. Many agents, including ABCA1 agonists (CS-6253, IMM-H007, RG7273, and R3R-01), FLNA antagonist sumifilam, LRP6 inhibitor BI-905677 and agonist SZN-1326, and SOX2 inhibitor STEMVAC, were investigated in clinical trials. Targeting these genes could improve the success rate of drug development in clinical trials. Indeed, many agents could regulate ARL4C expression, including LXR/RXR agonists, Ac-LDL, sucrose, T9-t11-CLA, and miR-26. Downregulation of ARL4C with siRNA and anti-sense oligonucleotide (ASO), such as ASO-1316, is developing in preclinical research for the treatment of lung adenocarcinoma, liver cancer, and colorectal cancer. Thus, ARL4C and its regulated genes may be a potential target for drug development. Thus, we focus on the role of ARL4C and its-mediated genes in atherosclerosis and agent development, which provide insights for the identification, research, and drug development of novel targets.