Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Wunderlich, Kurt"
Sort by:
Effectiveness of blended learning to improve medical students’ communication skills: a randomized, controlled trial
Background This study aimed to evaluate whether a blended learning course improves medical students’ communication skills compared to a face-to-face only lecture. Methods After completing a face-to-face lecture on communication skills, 2nd year medical students were gender-matched and randomized to either an intervention receiving an interactive video-based online learning module covering the content of the previous lecture and including a knowledge assessment or a control group only receiving a knowledge assessment. The primary endpoint was students’ knowledge about communication techniques assessed by a predefined score from 0 to 100. Secondary outcomes included students’ feedback and satisfaction on a scale from 0 to 5. Additionally, qualitative analysis of free-text responses to patient case vignettes was conducted. Results One hundred sixty-four medical students were included in the final analysis (64% female). The intervention group had significantly higher knowledge (mean, SD points) (73.6 ± 10.7 versus 56.7 ± 15.3, adjusted difference 17.02, 95%CI 12.95 to 21.1, p  < 0.001) and reported higher satisfaction (4.3 ± 0.9 versus 3.5 ± 1.0, difference 0.78, 95%CI 0.48 to 1.07, p  < 0.001) compared to the control group. Qualitative analysis of free-text responses also revealed improvements in patient-centered communication techniques in the intervention group. Conclusions Blended learning significantly enhances medical students’ communication skills and satisfaction compared to traditional lecture-based learning and may thereby contribute to the development of future knowledge and practices to improve patient-centered care. Clinical trial number Not applicable.
Changing China
Robert Elegant wrote a very informative article on today's China (\"A World of Change in China,\" July 11). However, I would like to make the following corrections;
Polymer cyclization for the emergence of hierarchical nanostructures
The creation of synthetic polymer nanoobjects with well-defined hierarchical structures is important for a wide range of applications such as nanomaterial synthesis, catalysis, and therapeutics. Inspired by the programmability and precise three-dimensional architectures of biomolecules, here we demonstrate the strategy of fabricating controlled hierarchical structures through self-assembly of folded synthetic polymers. Linear poly(2-hydroxyethyl methacrylate) of different lengths are folded into cyclic polymers and their self-assembly into hierarchical structures is elucidated by various experimental techniques and molecular dynamics simulations. Based on their structural similarity, macrocyclic brush polymers with amphiphilic block side chains are synthesized, which can self-assemble into wormlike and higher-ordered structures. Our work points out the vital role of polymer folding in macromolecular self-assembly and establishes a versatile approach for constructing biomimetic hierarchical assemblies. Synthetic polymer nano-objects with well-defined hierarchical structures are important for a wide range of applications such as nanomaterial synthesis, catalysis, and therapeutics. Here the authors demonstrate the strategy of fabricating controlled hierarchical structures through self-assembly of folded synthetic polymers.
Somatic Mutation Profiles of MSI and MSS Colorectal Cancer Identified by Whole Exome Next Generation Sequencing and Bioinformatics Analysis
Colorectal cancer (CRC) is with approximately 1 million cases the third most common cancer worldwide. Extensive research is ongoing to decipher the underlying genetic patterns with the hope to improve early cancer diagnosis and treatment. In this direction, the recent progress in next generation sequencing technologies has revolutionized the field of cancer genomics. However, one caveat of these studies remains the large amount of genetic variations identified and their interpretation. Here we present the first work on whole exome NGS of primary colon cancers. We performed 454 whole exome pyrosequencing of tumor as well as adjacent not affected normal colonic tissue from microsatellite stable (MSS) and microsatellite instable (MSI) colon cancer patients and identified more than 50,000 small nucleotide variations for each tissue. According to predictions based on MSS and MSI pathomechanisms we identified eight times more somatic non-synonymous variations in MSI cancers than in MSS and we were able to reproduce the result in four additional CRCs. Our bioinformatics filtering approach narrowed down the rate of most significant mutations to 359 for MSI and 45 for MSS CRCs with predicted altered protein functions. In both CRCs, MSI and MSS, we found somatic mutations in the intracellular kinase domain of bone morphogenetic protein receptor 1A, BMPR1A, a gene where so far germline mutations are associated with juvenile polyposis syndrome, and show that the mutations functionally impair the protein function. We conclude that with deep sequencing of tumor exomes one may be able to predict the microsatellite status of CRC and in addition identify potentially clinically relevant mutations.
High-Throughput miRNA and mRNA Sequencing of Paired Colorectal Normal, Tumor and Metastasis Tissues and Bioinformatic Modeling of miRNA-1 Therapeutic Applications
MiRNAs are discussed as diagnostic and therapeutic molecules. However, effective miRNA drug treatments with miRNAs are, so far, hampered by the complexity of the miRNA networks. To identify potential miRNA drugs in colorectal cancer, we profiled miRNA and mRNA expression in matching normal, tumor and metastasis tissues of eight patients by Illumina sequencing. We validated six miRNAs in a large tissue screen containing 16 additional tumor entities and identified miRNA-1, miRNA-129, miRNA-497 and miRNA-215 as constantly de-regulated within the majority of cancers. Of these, we investigated miRNA-1 as representative in a systems-biology simulation of cellular cancer models implemented in PyBioS and assessed the effects of depletion as well as overexpression in terms of miRNA-1 as a potential treatment option. In this system, miRNA-1 treatment reverted the disease phenotype with different effectiveness among the patients. Scoring the gene expression changes obtained through mRNA-Seq from the same patients we show that the combination of deep sequencing and systems biological modeling can help to identify patient-specific responses to miRNA treatments. We present this data as guideline for future pre-clinical assessments of new and personalized therapeutic options.
5qSMA: standardised retrospective natural history assessment in 268 patients with four copies of SMN2
Newborn screening for 5qSMA offers the potential for early, ideally pre-symptomatic, therapeutic intervention. However, limited data exist on the outcomes of individuals with 4 copies of SMN2 , and there is no consensus within the SMA treatment community regarding early treatment initiation in this subgroup. To provide evidence-based insights into disease progression, we performed a retrospective analysis of 268 patients with 4 copies of SMN2 from the SMArtCARE registry in Germany, Austria and Switzerland. Inclusion criteria required comprehensive baseline data and diagnosis outside of newborn screening. Only data prior to initiation of disease-modifying treatment were included. The median age at disease onset was 3.0 years, with a mean of 6.4 years. Significantly, 55% of patients experienced symptoms before the age of 36 months. 3% never learned to sit unaided, a further 13% never gained the ability to walk independently and 33% of ambulatory patients lost this ability during the course of the disease. 43% developed scoliosis, 6.3% required non-invasive ventilation and 1.1% required tube feeding. In conclusion, our study, in line with previous observations, highlights the substantial phenotypic heterogeneity in SMA. Importantly, this study provides novel insights: the median age of disease onset in patients with 4 SMN2 copies typically occurs before school age, and in half of the patients even before the age of three years. These findings support a proactive approach, particularly early treatment initiation, in this subset of SMA patients diagnosed pre-symptomatically. However, it is important to recognize that the register will not include asymptomatic individuals.
PROGRESS – prospective observational study on hospitalized community acquired pneumonia
Background Community acquired pneumonia (CAP) is a high incidence disease resulting in about 260,000 hospital admissions per year in Germany, more than myocardial infarction or stroke. Worldwide, CAP is the most frequent infectious disease with high lethality ranging from 1.2 % in those 20–29 years old to over 10 % in patients older than 70 years, even in industrial nations. CAP poses numerous medical challenges, which the PROGRESS (Pneumonia Research Network on Genetic Resistance and Susceptibility for the Evolution of Severe Sepsis) network aims to tackle: Operationalization of disease severity throughout the course of disease, outcome prediction for hospitalized patients and prediction of transitions from uncomplicated CAP to severe CAP, and finally, to CAP with sepsis and organ failure as a life-threatening condition. It is a major aim of PROGRESS to understand and predict patient heterogeneity regarding outcome in the hospital and to develop novel treatment concepts. Methods PROGRESS was designed as a clinical, observational, multi-center study of patients with CAP requiring hospitalization. More than 1600 patients selected for low burden of co-morbidities have been enrolled, aiming at a total of 3000. Course of disease, along with therapy, was closely monitored by daily assessments and long-term follow-up. Daily blood samples allow in depth molecular-genetic characterization of patients. We established a well-organized workflow for sample logistics and a comprehensive data management system to collect and manage data from more than 50 study centers in Germany and Austria. Samples are stored in a central biobank and clinical data are stored in a central data base which also integrates all data from molecular assessments. Discussion With the PROGRESS study, we established a comprehensive data base of high quality clinical and molecular data allowing investigation of pressing research questions regarding CAP. In-depth molecular characterization will contribute to the discovery of disease mechanisms and establishment of diagnostic and predictive biomarkers. A strength of PROGRESS is the focus on younger patients with low burden of co-morbidities, allowing a more direct look at host biology with less confounding. As a resulting limitation, insights from PROGRESS will require validation in representative patient cohorts to assess clinical utility. Trial registration The PROGRESS study was retrospectively registered on May 24 th , 2016 with ClinicalTrials.gov: NCT02782013
Generation of a double-fluorescent double-selectable Cre/loxP indicator vector for monitoring of intracellular recombination events
Here we describe the generation of a double-fluorescent Cre/loxP indicator system. This protocol involves (i) all cloning steps to generate the plasmid vector (3–5 months); (ii) a guide to prepare high-efficiency transformation competent E. coli ; (iii) generation of double-fluorescent reporter cell lines (3–4 weeks); and (iv) the functional testing of the indicator cell lines by application of cell-permeable Cre recombinase. The indicator is designed to monitor recombination events by switching the fluorescence light from red to green. The red fluorescence, indicating the nonrecombined state, is accompanied by the expression of a resistance gene against the antibiotic blasticidin. Appearance of green fluorescence concomitantly with the activation of puromycin-acetyltransferase monitors the recombination of the indicator construct by the Cre recombinase. In summary, we have developed a plasmid vector allowing a fast, stable and straightforward generation of transgenic clones. The expression of red fluorescent protein enables the selection of positive clones upon transfection and significantly shortens the time for identification of stable clones. This feature and the option to select for recombined cells by puromycin application are advantages compared with other alternative methods. Moreover, we developed a method utilizing cell-permeable Cre protein to validate the transgenic clones. Ultimately, this powerful methodology facilitates Cre/loxP-based applications such as cell lineage tracking or monitoring of cell fusion.