Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
30
result(s) for
"Wurth, Wilfried"
Sort by:
Direct observation of charge separation in an organic light harvesting system by femtosecond time-resolved XPS
by
Wurth, Wilfried
,
Gessner, Oliver
,
Eberhardt, Wolfgang
in
140/146
,
639/301/299/946
,
639/4077/4072
2021
The ultrafast dynamics of photon-to-charge conversion in an organic light-harvesting system is studied by femtosecond time-resolved X-ray photoemission spectroscopy (TR-XPS) at the free-electron laser FLASH. This novel experimental technique provides site-specific information about charge separation and enables the monitoring of free charge carrier generation dynamics on their natural timescale, here applied to the model donor-acceptor system CuPc:C
60
. A previously unobserved channel for exciton dissociation into mobile charge carriers is identified, providing the first direct, real-time characterization of the timescale and efficiency of charge generation from low-energy charge-transfer states in an organic heterojunction. The findings give strong support to the emerging realization that charge separation even from energetically disfavored excitonic states is contributing significantly, indicating new options for light harvesting in organic heterojunctions.
Understanding ultrafast dynamics of photon-to-charge conversion is paramount for optimising light-harvesting systems. Here, the authors use femtosecond time-resolved X-ray photoemission spectroscopy to reveal specific charge separation sites and monitor free charge formation in a model donor-acceptor system.
Journal Article
Ultrafast orbital tomography of a pentacene film using time-resolved momentum microscopy at a FEL
2022
Time-resolved momentum microscopy provides insight into the ultrafast interplay between structural and electronic dynamics. Here we extend orbital tomography into the time domain in combination with time-resolved momentum microscopy at a free-electron laser (FEL) to follow transient photoelectron momentum maps of excited states of a bilayer pentacene film on Ag(110). We use optical pump and FEL probe pulses by keeping FEL source conditions to minimize space charge effects and radiation damage. From the momentum microscopy signal, we obtain time-dependent momentum maps of the excited-state dynamics of both pentacene layers separately. In a combined experimental and theoretical study, we interpret the observed signal for the bottom layer as resulting from the charge redistribution between the molecule and the substrate induced by excitation. We identify that the dynamics of the top pentacene layer resembles excited-state molecular dynamics.
Ultrafast pulses are useful to investigate the electron dynamics in excited atoms, molecules and other complex systems. Here, the authors measure transient photoelectron momentum maps following the free-electron laser pulse-induced ionization of a bilayer pentacene thin film on Ag (110) by using time-resolved orbital tomography.
Journal Article
Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics
by
Arregi, Jon Ander
,
Agustsson, Steinn Ymir
,
Kutnyakhov, Dmytro
in
639/766/119/2793
,
639/766/119/2795
,
639/766/119/995
2021
Femtosecond light-induced phase transitions between different macroscopic orders provide the possibility to tune the functional properties of condensed matter on ultrafast timescales. In first-order phase transitions, transient non-equilibrium phases and inherent phase coexistence often preclude non-ambiguous detection of transition precursors and their temporal onset. Here, we present a study combining time-resolved photoelectron spectroscopy and ab-initio electron dynamics calculations elucidating the transient subpicosecond processes governing the photoinduced generation of ferromagnetic order in antiferromagnetic FeRh. The transient photoemission spectra are accounted for by assuming that not only the occupation of electronic states is modified during the photoexcitation process. Instead, the photo-generated non-thermal distribution of electrons modifies the electronic band structure. The ferromagnetic phase of FeRh, characterized by a minority band near the Fermi energy, is established 350 ± 30 fs after the laser excitation. Ab-initio calculations indicate that the phase transition is initiated by a photoinduced Rh-to-Fe charge transfer.
In FeRh, it is possible to optically drive a phase transition between ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering. Here, using a combination of photoelectron spectroscopy and ab-initio calculations, the authors demonstrate the existence of a transient intermediate phase, explaining the delayed appearance of the FM phase.
Journal Article
liquid-liquid phase transition in silicon revealed by snapshots of valence electrons
by
Schlotter, William F
,
Wurth, Wilfried
,
Sorgenfrei, Florian
in
Atoms & subatomic particles
,
Conduction bands
,
Crystallization
2010
The basis for the anomalies of water is still mysterious. Quite generally tetrahedrally coordinated systems, also silicon, show similar thermodynamic behavior but lack--like water--a thorough explanation. Proposed models--controversially discussed--explain the anomalies as a remainder of a first-order phase transition between high and low density liquid phases, buried deeply in the \"no man's land\"--a part of the supercooled liquid region where rapid crystallization prohibits any experimental access. Other explanations doubt the existence of the phase transition and its first-order nature. Here, we provide experimental evidence for the first-order-phase transition in silicon. With ultrashort optical pulses of femtosecond duration we instantaneously heat the electronic system of silicon while the atomic structure as defined by the much heavier nuclear system remains initially unchanged. Only on a picosecond time scale the energy is transferred into the atomic lattice providing the energy to drive the phase transitions. With femtosecond X-ray pulses from FLASH, the free-electron laser at Hamburg, we follow the evolution of the valence electronic structure during this process. As the relevant phases are easily distinguishable in their electronic structure, we track how silicon melts into the low-density-liquid phase while a second phase transition into the high-density-liquid phase only occurs after the latent heat for the first-order phase transition has been transferred to the atomic structure. Proving the existence of the liquid-liquid phase transition in silicon, the hypothesized liquid-liquid scenario for water is strongly supported.
Journal Article
Seeded X-ray free-electron laser generating radiation with laser statistical properties
by
Giannessi, Luca
,
Kiskinova, Maya
,
Dell’Angela, Martina
in
132/124
,
639/624/1020/1087
,
639/624/1107/527
2018
The invention of optical lasers led to a revolution in the field of optics and to the creation of such fields of research as quantum optics. The reason was their unique statistical and coherence properties. The emerging, short-wavelength free-electron lasers (FELs) are sources of very bright coherent extreme-ultraviolet and X-ray radiation with pulse durations on the order of femtoseconds, and are presently considered to be laser sources at these energies. FELs are highly spatially coherent to the first-order but in spite of their name, behave statistically as chaotic sources. Here, we demonstrate experimentally, by combining Hanbury Brown and Twiss interferometry with spectral measurements that the seeded XUV FERMI FEL-2 source does indeed behave statistically as a laser. The results may be useful for quantum optics experiments and for the design and operation of next generation FEL sources.
Free electron lasers are emerging as important tools for nonlinear spectroscopy in the X-ray regime. Here the authors demonstrate the second order coherence of a seeded FEL source that may be useful for measurements in quantum optics.
Journal Article
Time-resolved observation of band-gap shrinking and electron-lattice thermalization within X-ray excited gallium arsenide
by
Wurth, Wilfried
,
Maltezopoulos, Theophilos
,
Tkachenko, Victor
in
639/766/119
,
639/766/1960
,
Conduction
2015
Femtosecond X-ray irradiation of solids excites energetic photoelectrons that thermalize on a timescale of a few hundred femtoseconds. The thermalized electrons exchange energy with the lattice and heat it up. Experiments with X-ray free-electron lasers have unveiled so far the details of the electronic thermalization. In this work we show that the data on transient optical reflectivity measured in GaAs irradiated with femtosecond X-ray pulses can be used to follow electron-lattice relaxation up to a few tens of picoseconds. With a dedicated theoretical framework, we explain the so far unexplained reflectivity overshooting as a result of band-gap shrinking. We also obtain predictions for a timescale of electron-lattice thermalization, initiated by conduction band electrons in the temperature regime of a few eVs. The conduction and valence band carriers were then strongly non-isothermal. The presented scheme is of general applicability and can stimulate further studies of relaxation within X-ray excited narrow band-gap semiconductors.
Journal Article
An open-source, end-to-end workflow for multidimensional photoemission spectroscopy
2020
Characterization of the electronic band structure of solid state materials is routinely performed using photoemission spectroscopy. Recent advancements in short-wavelength light sources and electron detectors give rise to multidimensional photoemission spectroscopy, allowing parallel measurements of the electron spectral function simultaneously in energy, two momentum components and additional physical parameters with single-event detection capability. Efficient processing of the photoelectron event streams at a rate of up to tens of megabytes per second will enable rapid band mapping for materials characterization. We describe an open-source workflow that allows user interaction with billion-count single-electron events in photoemission band mapping experiments, compatible with beamlines at 3rd and 4rd generation light sources and table-top laser-based setups. The workflow offers an end-to-end recipe from distributed operations on single-event data to structured formats for downstream scientific tasks and storage to materials science database integration. Both the workflow and processed data can be archived for reuse, providing the infrastructure for documenting the provenance and lineage of photoemission data for future high-throughput experiments.
Journal Article
Author Correction: Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics
by
Arregi, Jon Ander
,
Agustsson, Steinn Ymir
,
Kutnyakhov, Dmytro
in
639/766/119/2793
,
639/766/119/2795
,
639/766/119/995
2023
Correction to: Nature Communications https://doi.org/10.1038/s41467-021-25347-3, published online 24 August 2021In the authors final submission, the Supplementary Information was uploaded as a ZIP file, containing a non-compliable TeX file, rather than in PDF or word document. The Supplementary movies referred to within the text were not included in the final version as part of the Supplementary Information ZIP file.The attached files are the correct versions of the Supplementary Information and Supplementary movies referred to in the text, contained in the attached ZIP file and contain no changes.
Journal Article
The FLASH Facility: Advanced Options for FLASH2 and Future Perspectives
by
Hensler, Olaf
,
Tiedtke, Kai
,
Vogt, Mathias
in
free-electron lasers
,
frequency doubling
,
Lasers
2017
Since 2016, the two free-electron laser (FEL) lines FLASH1 and FLASH2 have been run simultaneously for users at DESY in Hamburg. With the installation of variable gap undulators in the new FLASH2 FEL line, many new possibilities have opened up in terms of photon parameters for experiments. What has been tested so far is post-saturation tapering, reverse tapering, harmonic lasing, harmonic lasing self-seeding and two-color lasing. At the moment, we are working on concepts to enhance the capabilities of the FLASH facility even further. A major part of the upgrade plans, known as FLASH2020, will involve the exchange of the fixed gap undulators in FLASH1 and the implementation of a new flexible undulator scheme aimed at providing coherent radiation for multi-color experiments over a broad wavelength range. The recent achievements in FLASH2 and the current status of plans for the further development of the facility are presented.
Journal Article
Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses
2018
We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.
Journal Article