Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
51
result(s) for
"Wysocki, Marcin"
Sort by:
Chlorin Activity Enhancers for Photodynamic Therapy
2025
Photodynamic therapy (PDT) is a non-invasive therapeutic method with over a century of medical use, especially in dermatology, ophthalmology, dentistry, and, notably, cancer treatment. With an increasing number of clinical trials, there is growing demand for innovation in PDT. Despite being a promising treatment for cancer and bacterial infections, PDT faces limitations such as poor water solubility of many photosensitizers (PS), limited light penetration, off-target accumulation, and tumor hypoxia. This review focuses on chlorins—well-established macrocyclic PSs known for their strong activity and clinical relevance. We discuss how nanotechnology addresses PDT’s limitations and enhances therapeutic outcomes. Nanocarriers like lipid-based (liposomes, micelles), polymer-based (cellulose, chitosan, silk fibroin, polyethyleneimine, PLGA), and carbon-based ones (graphene oxide, quantum dots, MOFs), and nanospheres are promising platforms that improve chlorin performance and reduce side effects. This review also explores their use in Antimicrobial Photodynamic Therapy (aPDT) against multidrug-resistant bacteria and in oncology. Recent in vivo studies demonstrate encouraging results in preclinical models using nanocarrier-enhanced chlorins, though clinical application remains limited.
Journal Article
N-Methylpyridinium Porphyrin Complexes as Sensitizers for Sonodynamic Therapy Against Planktonic and Biofilm-Forming Multidrug-Resistant Microbes
by
Kubicka, Agata
,
Sobotta, Lukasz
,
Giuntini, Francesca
in
Anti-Bacterial Agents - chemistry
,
Anti-Bacterial Agents - pharmacology
,
Antibiotics
2025
Porphyrins play an extremely important role in both photodynamic (PDT) and sonodynamic therapy (SDT). These techniques, which have a lot in common, are largely based on the interaction between the sensitizer and light or ultrasounds (US), respectively, resulting in the formation of reactive oxygen species (ROS) that have the ability to destroy target cells. SDT requires the use of an appropriate frequency of US waves that are able to excite the chemical compound used. In this study, five porphyrin complexes were used: free-base meso-tetra(N-methyl-pyridinium-4-yl)porphyrin (TMPyP) and its transition metal complexes containing zinc(II), palladium(II), copper(II), and chloride-iron(II). The sonodynamic activity of these compounds was studied in vitro. The obtained results confirm the significant relationship between the chemical structure of the macrocycle and its stability and ability to generate ROS. The highest efficiency in ROS generation and high stability were demonstrated by non-metalated compound and its complex with zinc(II), while complex with copper(II), although less stable, were equally effective in terms of ROS production. Antibacterial activity tests showed the unique properties of the tested compounds, including a reduction in the number of both planktonic and biofilm antibiotic-resistant microorganisms above 5 log, which is rare among sonosensitizers.
Journal Article
Axially Disubstituted Silicon(IV) Phthalocyanine as a Potent Sensitizer for Antimicrobial and Anticancer Photo and Sonodynamic Therapy
by
Jozkowiak, Malgorzata
,
Sobotta, Lukasz
,
Wysocki, Marcin
in
Anti-Bacterial Agents - chemistry
,
Anti-Bacterial Agents - pharmacology
,
Anti-Infective Agents - chemistry
2025
The unique properties of phthalocyanines (Pcs), such as strong absorption, high photostability, effective singlet oxygen generation, low toxicity and biocompatibility, versatile chemical modifications, broad spectrum of antimicrobial activity, and synergistic effects with other treatment modalities, make them a preferred superior sensitizer in the field of antimicrobial photodynamic therapy. The photodynamic and sonodynamic activity of 3-(3-(diethylamino)phenoxy)propanoxy substituted silicon(IV) Pc were evaluated against bacteria and cancer cells. Stability and singlet oxygen generation upon light irradiation and ultrasound (1 MHz, 3 W) were assessed with 1,3-diphenylisobenzofuran. The phthalocyanine revealed high photostability in DMF and DMSO, although the singlet oxygen yields under light irradiation were low. On the other hand, the phthalocyanine revealed excellent sonostability and caused a high rate of DPBF degradation upon excitation by ultrasounds at 1 MHz. The silicon phthalocyanine presented significant bacterial reduction growth, up to 5 log against MRSA and S. epidermidis upon light excitation, whereas the sonodynamic effect was negligible. The phthalocyanine revealed high activity in both photodynamic and sonodynamic manner toward hypopharyngeal tumor (FaDu, 95% and 42% reduction, respectively) and squamous cell carcinoma (SCC-25, 96% and 62% reduction, respectively). The sensitizer showed ca. 30% aldehyde dehydrogenase inhibition in various concentrations and up to 85% platelet-activating factor acetylhydrolase for 0.25 μM, while protease-activated protein C was stimulated up to 66% for 0.75 μM.
Journal Article
Quaternized Curcumin Derivative—Synthesis, Physicochemical Characteristics, and Photocytotoxicity, Including Antibacterial Activity after Irradiation with Blue Light
by
Sobotta, Lukasz
,
Goslinski, Tomasz
,
Bakun, Pawel
in
Active oxygen
,
Aliivibrio fischeri - drug effects
,
Anti-Bacterial Agents - chemical synthesis
2024
Over the past few years, numerous bacterial strains have become resistant to selected drugs from various therapeutic groups. A potential tool in the fight against these strains is antimicrobial photodynamic therapy (APDT). APDT acts in a non-specific manner by generating reactive oxygen species and radicals, thereby inducing multidimensional intracellular effects. Importantly, the chance that bacteria will develop defense mechanisms against APDT is considered to be low. In our research, we performed the synthesis and physicochemical characterization of curcumin derivatives enriched with morpholine motifs. The obtained compounds were assessed regarding photostability, singlet oxygen generation, aggregation, and acute toxicity toward prokaryotic Aliivibrio fischeri cells in the Microtox® test. The impact of the compounds on the survival of eukaryotic cells in the MTT assay was also tested (WM266-4, WM115—melanoma, MRC-5—lung fibroblasts, and PHDF—primary human dermal fibroblasts). Initial studies determining the photocytotoxicity, and thus the potential APDT usability, were conducted with the following microbial strains: Candida albicans, Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Pseudomonas aeruginosa. It was noted that the exposure of bacteria to LED light at 470 nm (fluence: 30 J/cm2) in the presence of quaternized curcumin derivatives at the conc. of 10 µM led to a reduction in Staphylococcus aureus survival of over 5.4 log.
Journal Article
The Dual Synergy of Photodynamic and Sonodynamic Therapy in the Eradication of Methicillin-Resistant Staphylococcus aureus
2023
Recently, the combined application of synergistic therapies for photodynamic antimicrobial chemotherapy has become important to obtain more efficient results. The synergism between two sensitizers, rose bengal (RB) and chlorin e6 (Ce6), excited by two different methods, was evaluated as a novel approach to both photodynamic and sonodynamic therapy against methicillin-resistant Staphylococcus aureus. The sonostability and singlet oxygen generation (with 1,3-diphenylisobenzofuran for RB and tetrathiafulvalene for Ce6) were measured under sonication (1 MHz, 3 W) using a spectrophotometer. RB and Ce6 remained stable during sonication. RB was a more efficient sonosensitizer than Ce6. The dual synergism between RB and Ce6 was noticed, achieving a >3 log reduction for molar ratios RB:Ce6 of 1:1 and 1:3, while, alone, the sensitizers excited with ultrasound and light, respectively, achieved only ca. a 1 log reduction.
Journal Article
Nanotechnology for Dentistry: Prospects and Applications
by
Sobotta, Lukasz
,
Michalak, Maciej
,
Wysocki, Marcin
in
Adhesive strength
,
Aesthetics
,
antibacterial nanoagents
2023
In the XXI century, application of nanostructures in oral medicine has become common. In oral medicine, using nanostructures for the treatment of dental caries constitutes a great challenge. There are extensive studies on the implementation of nanomaterials to dental composites in order to improve their properties, e.g., their adhesive strength. Moreover, nanostructures are helpful in dental implant applications as well as in maxillofacial surgery for accelerated healing, promoting osseointegration, and others. Dental personal care products are an important part of oral medicine where nanomaterials are increasingly used, e.g., toothpaste for hypersensitivity. Nowadays, nanoparticles such as macrocycles are used in different formulations for early cancer diagnosis in the oral area. Cancer of the oral cavity—human squamous carcinoma—is the sixth leading cause of death. Detection in the early stage offers the best chance at total cure. Along with diagnosis, macrocycles are used for photodynamic mechanism-based treatments, which possess many advantages, such as protecting healthy tissues and producing good cosmetic results. Application of nanostructures in medicine carries potential risks, like long-term influence of toxicity on body, which need to be studied further. The introduction and development of nanotechnologies and nanomaterials are no longer part of a hypothetical future, but an increasingly important element of today’s medicine.
Journal Article
Versatile Porphyrin Arrangements for Photodynamic Therapy—A Review
by
Sobotta, Lukasz
,
Michalak, Maciej
,
Wysocki, Marcin
in
Bacteria
,
bacterial infections
,
Biocompatibility
2024
Nanotechnology is an emerging field that involves the development of nanoscale particles, their fabrication methods, and potential applications. From nanosized inorganic particles to biopolymers, the variety of nanoparticles is unstoppably growing, offering huge opportunities for drug delivery. Various nanoformulations, such as nanoparticles, nanocomposites, and nanoemulsions, have been developed to enhance drug stability, solubility, and tissue penetration. Moreover, nanocarriers can be specifically engineered to target diseased cells or release the drug in a controllable manner, minimizing damage to surrounding healthy tissues and reducing side effects. This review focuses on the combinations between porphyrin derivatives and nanocarriers applied in photodynamic therapy (PDT). PDT has emerged as a significant advance in medicine, offering a low-invasive method for managing infections, the treatment of tumors, and various dermatoses. The therapy relies on the activation of a photosensitizer by light, which results in the generation of reactive oxygen species. Despite their favorable properties, porphyrins reveal non-specific distribution within the body. Nanotechnology has the capability to enhance the PS delivery and its activation. This review explores the potential improvements that are provided by the use of nanotechnology in the PDT field.
Journal Article
Rethinking the Esterquats: Synthesis, Stability, Ecotoxicity and Applications of Esterquats Incorporating Analogs of Betaine or Choline as the Cation in Their Structure
by
Wysocki, Marcin
,
Smolibowski, Mikołaj
,
Olejniczak, Adriana
in
Amino acids
,
Betaine - analogs & derivatives
,
Betaine - chemistry
2024
Esterquats constitute a unique group of quaternary ammonium salts (QASs) that contain an ester bond in the structure of the cation. Despite the numerous advantages of this class of compounds, only two mini-reviews discuss the subject of esterquats: the first one (2007) briefly summarizes their types, synthesis, and structural elements required for a beneficial environmental profile and only briefly covers their applications whereas the second one only reviews the stability of selected betaine-type esterquats in aqueous solutions. The rationale for writing this review is to critically reevaluate the relevant literature and provide others with a “state-of-the-art” snapshot of choline-type esterquats and betaine-type esterquats. Hence, the first part of this survey thoroughly summarizes the most important scientific reports demonstrating effective synthesis routes leading to the formation of both types of esterquats. In the second section, the susceptibility of esterquats to hydrolysis is explained, and the influence of various factors, such as the pH, the degree of salinity, or the temperature of the solution, was subjected to thorough analysis that includes quantitative components. The next two sections refer to various aspects associated with the ecotoxicity of esterquats. Consequently, their biodegradation and toxic effects on microorganisms are extensively analyzed as crucial factors that can affect their commercialization. Then, the reported applications of esterquats are briefly discussed, including the functionalization of macromolecules, such as cotton fabric as well as their successful utilization on a commercial scale. The last section demonstrates the most essential conclusions and reported drawbacks that allow us to elucidate future recommendations regarding the development of these promising chemicals.
Journal Article
The Dual Synergy of Photodynamic and Sonodynamic Therapy in the Eradication of Methicillin-Resistant IStaphylococcus aureus/I
by
Wysocki, Marcin
,
Dlugaszewska, Jolanta
,
Sobotta, Lukasz
in
Cancer
,
Care and treatment
,
Ceftaroline
2023
Recently, the combined application of synergistic therapies for photodynamic antimicrobial chemotherapy has become important to obtain more efficient results. The synergism between two sensitizers, rose bengal (RB) and chlorin e6 (Ce6), excited by two different methods, was evaluated as a novel approach to both photodynamic and sonodynamic therapy against methicillin-resistant Staphylococcus aureus. The sonostability and singlet oxygen generation (with 1,3-diphenylisobenzofuran for RB and tetrathiafulvalene for Ce6) were measured under sonication (1 MHz, 3 W) using a spectrophotometer. RB and Ce6 remained stable during sonication. RB was a more efficient sonosensitizer than Ce6. The dual synergism between RB and Ce6 was noticed, achieving a >3 log reduction for molar ratios RB:Ce6 of 1:1 and 1:3, while, alone, the sensitizers excited with ultrasound and light, respectively, achieved only ca. a 1 log reduction.
Journal Article
The Strategies to Support the COVID-19 Vaccination with Evidence-Based Communication and Tackling Misinformation
by
Pyrć, Krzysztof
,
Zajkowska, Joanna
,
Rzymski, Piotr
in
Clinical trials
,
Communication
,
Coronaviruses
2021
COVID-19 vaccinations are about to begin in various countries or are already ongoing. This is an unprecedented operation that is also met with a loud response from anti-vaccine communities—currently using all available channels to manipulate public opinion. At the same time, the strategy to educate on vaccinations, explain their mechanism of action, and build trust in science is subdued in different world parts. Such actions should go much beyond campaigns promoting the COVID-19 vaccines solely on the information provided by the health institutions and national authorities. In this paper, actions provided by independent expert groups needed to counteract the anti-vaccine propaganda and provide scientific-based information to the general public are offered. These actions encompass organizing groups continuously communicating science on COVID-19 vaccines to the general public; tracking and tackling emerging and circulating fake news; and equipping celebrities and politicians with scientific information to ensure the quality of messages they communicate, as well as public letters, and statements of support for vaccination by healthcare workers, recognized scientists, VIPs, and scientific societies; and no tolerance to false and manipulated claims on vaccination spread via traditional and social media as well as by health professionals, scientists, and academics. These activities should be promptly implemented worldwide, regardless of the current status and availability of the COVID-19 vaccine in a particular region. If we are about to control the pandemic for the sake of public benefit, it is high time to collectively speak out as academic and medical societies with support from decision-makers. Otherwise, the battle will be lost to those who stand against scientific evidence while offering no feasible solution to the problem.
Journal Article