Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5,318 result(s) for "Xia, Ling"
Sort by:
Neurostructural correlates of harm action/outcome aversion: The role of empathy
•Both harm action/outcome aversion involve the rGMV/rGMD in the right IFG.•rGMV/rGMD in the precuneus was associated with harm action aversion.•rGMD in the SFG and rGMV in the cerebellum contribute to harm action aversion.•rGMD in the S1 was associated with harm outcome aversion.•Empathy mediated links between brain structures and harm action/outcome aversion. Harm aversion is essential for normal human functioning; however, the neuroanatomical mechanisms underlying harm aversion remain unclear. To explore this issue, we examined the brain structures associated with the two distinct dimensions of harm aversion (harm action/outcome aversion) and the potential mediating role of the four aspects of empathy: fantasy, perspective-taking, empathic concern, and personal distress. A sample of 214 healthy young adults underwent structural magnetic resonance imaging. Voxel-based morphometry was used to assess regional gray matter volume (rGMV) and regional gray matter density (rGMD). Whole-brain multiple regression analysis revealed significant correlations between harm action aversion and rGMV/rGMD in various brain regions, including the inferior frontal gyrus (IFG) and precuneus for both rGMV and rGMD, the cerebellum for rGMV, and the superior frontal gyrus for rGMD. The rGMV/rGMD in the IFG and the rGMD in the primary somatosensory cortex (S1) were correlated with harm outcome aversion. Utilizing 10-fold balanced cross-validation analysis, we confirmed the robustness of these significant associations between rGMV/rGMD in these brain regions and harm action/outcome aversion. Importantly, mediation analysis revealed that empathic concern mediated the relationship between rGMV/rGMD in the precuneus and harm action aversion. Additionally, empathic concern, personal distress, and total empathy mediated the relationship between rGMD in the S1 and harm outcome aversion. These findings enhance our understanding of the neural mechanism of harm aversion by integrating insights from the brain structure, harm aversion, and the personality hierarchy models while also extending the frontal asymmetry model of Emotion
Astragaloside IV inhibits astrocyte senescence: implication in Parkinson’s disease
Background Senescent astrocytes have been implicated in the aging brain and neurodegenerative disorders, including Parkinson’s disease (PD). Astragaloside IV (AS-IV) is an antioxidant derivative from a traditional Chinese herbal medicine Astragalus membraneaceus Bunge and exerts anti-inflammatory and longevity effects and neuroprotective activities. However, its effect on astrocyte senescence in PD remains to be defined. Methods Long culture-induced replicative senescence model and lipopolysaccharide/1-methyl-4-phenylpyridinium (LPS/MPP + )-induced premature senescence model and a mouse model of PD were used to investigate the effect of AS-IV on astrocyte senescence in vivo and in vitro. Immunocytochemistry, qPCR, subcellular fractionation, flow cytometric analyses, and immunohistochemistry were subsequently conducted to determine the effects of AS-IV on senescence markers. Results We found that AS-IV inhibited the astrocyte replicative senescence and LPS/MPP + -induced premature senescence, evidenced by decreased senescence-associated β-galactosidase activity and expression of senescence marker p16, and increased nuclear level of lamin B1, and reduced pro-inflammatory senescence-associated secretory phenotype. More importantly, we showed that AS-IV protected against the loss of dopamine neurons and behavioral deficits in the mouse model of PD, which companied by reduced accumulation of senescent astrocytes in substantia nigra compacta. Mechanistically, AS-IV promoted mitophagy, which reduced damaged mitochondria accumulation and mitochondrial reactive oxygen species generation and then contributed to the suppression of astrocyte senescence. The inhibition of autophagy abolished the suppressive effects of AS-IV on astrocyte senescence. Conclusions Our findings reveal that AS-IV prevents dopaminergic neurodegeneration in PD via inhibition of astrocyte senescence through promoting mitophagy and suggest that AS-IV is a promising therapeutic strategy for the treatment of age-associated neurodegenerative diseases such as PD.
Brain structures and functional connectivity associated with individual differences in trait proactive aggression
Although considerable efforts have been made to understand the neural underpinnings of (state) reactive aggression, which is triggered by provocation or perceived threat, little is known about the neural correlates of proactive aggression, which is driven by instrumental motivations to obtain personal gains through aggressive means and which varies dramatically across individuals in terms of tendency of appealing to such means. Here, by combining structural (grey matter density, GMD) and functional (resting-state functional connection, RSFC) fMRI, we investigated brain structures and functional networks related to trait proactive aggression. We found that individual differences in trait proactive aggression were positively associated with GMD in bilateral dorsolateral prefrontal cortex (DLPFC) and negatively correlated with GMD in posterior cingulate cortex (PCC); they were also negatively correlated with the strength of functional connectivity between left PCC and other brain regions, including right DLPFC, right IPL, right MPFC/ACC, and bilateral precuneus. These findings shed light on the differential brain bases of proactive and reactive aggressions and suggested the neural underpinnings of proactive aggression.
MfbHLH38, a Myrothamnus flabellifolia bHLH transcription factor, confers tolerance to drought and salinity stresses in Arabidopsis
Background The basic helix-loop-helix (bHLH) proteins, a large transcription factors family, are involved in plant growth and development, and defensive response to various environmental stresses. The resurrection plant Myrothamnus flabellifolia is known for its extremely strong drought tolerance, but few bHLHs taking part in abiotic stress response have been unveiled in M. flabellifolia . Results In the present research, we cloned and characterized a dehydration-inducible gene, MfbHLH38, from M. flabellifolia . The MfbHLH38 protein is localized in the nucleus, where it may act as a transcription factor. Heterologous expression of MfbHLH38 in Arabidopsis improved the tolerance to drought and salinity stresses, as determined by the studies on physiological indexes, such as contents of chlorophyll, malondialdehyde (MDA), proline (Pro), soluble protein, and soluble sugar, water loss rate of detached leaves, reactive oxygen species (ROS) accumulation, as well as antioxidant enzyme activities. Besides, MfbHLH38 overexpression increased the sensitivity of stomatal closure to mannitol and abscisic acid (ABA), improved ABA level under drought stress, and elevated the expression of genes associated with ABA biosynthesis and ABA responding, sucha as NCED3 , P5CS , and RD29A . Conclusions Our results presented evidence that MfbHLH38 enhanced tolerance to drought and salinity stresses in Arabidopsis through increasing water retention ability, regulating osmotic balance, decreasing stress-induced oxidation damage, and possibly participated in ABA-dependent stress-responding pathway.
Hydrodynamic modes in holographic multiple-axion model
In this paper we investigate the shear viscoelasticity and the hydrodynamic modes in a holographic solid model with several sets of axions that all break the translations spontaneously on boundary. Comparing with the single-axion model, the shear modulus is enhanced at high temperatures and the shear viscosity is always suppressed in the presence of additional axions. However, the different sets of axions exhibit competitive relationship in determining the shear modulus at low temperatures. Furthermore, by calculating the black hole quasi-normal modes, it is found that adding more axions only increases the amount of diffusive modes. The number of the sound modes always remains unchanged.
Wogonin Alleviates Kidney Tubular Epithelial Injury in Diabetic Nephropathy by Inhibiting PI3K/Akt/NF-κB Signaling Pathways
Kidney tubular epithelial injury is one of the key factors in the progression of diabetic nephropathy (DN). Wogonin is a kind of flavonoid, which has many pharmacological effects, such as anti-inflammation, anti-oxidation and anti-fibrosis. However, the effect of wogonin in renal tubular epithelial cells during DN is still unknown. STZ-induced diabetic mice were given doses of wogonin (10, 20, and 40 mg/kg) by intragastric administration for 16 weeks. The metabolic indexes from blood and urine and pathological damage of renal tubules in mice were evaluated. Human tubular epithelial cells (HK-2) were cultured in high glucose (HG) condition containing wogonin (2μM, 4μM, 8μM) for 24 h. Tubular epithelial cell inflammation and autophagic dysfunction both in vivo and in vitro were assessed by Western blot, qRT-PCR, IHC, and IF analyses. The treatment of wogonin attenuated urinary albumin and histopathological damage in tubulointerstitium of diabetic mice. We also found that wogonin down-regulated the expression of pro-inflammatory cytokines and autophagic dysfunction in vivo and in vitro. Molecular docking and Cellular Thermal Shift Assay (CETSA) results revealed that mechanistically phosphoinositide 3-kinase (PI3K) was the target of wogonin. We then found that inhibiting PI3K eliminated the protective effect of wogonin. Wogonin regulated autophagy and inflammation via targeting PI3K, the important connection point of PI3K/Akt/NF-κB signaling pathway. Our study is the first to demonstrate the novel role of wogonin in mitigating tubulointerstitial fibrosis and renal tubular cell injury via regulating PI3K/Akt/NF-κB signaling pathway-mediated autophagy and inflammation. Wogonin might be a latent remedial drug against tubular epithelial injury in DN by targeting PI3K.
Hostile attribution bias and angry rumination: A longitudinal study of undergraduate students
Angry rumination and hostile attribution bias are important cognitive factors of aggression. Although prior theoretical models of aggression suggest that aggressive cognitive factors may influence each other, there are no studies examining the longitudinal relationship between angry rumination and hostile attribution bias. The present study used cross-lagged structural equation modeling to explore the longitudinal mutual relationship between hostile attribution bias and angry rumination; 941 undergraduate students (38.5% male) completed questionnaires assessing the variables at two time points. The results indicate that hostile attribution bias showed a small but statistically significant effect on angry rumination 6 months later, and angry rumination showed a quite small but marginally significant effect on hostile attribution bias across time. The present study supports the idea that hostile attribution bias influences angry rumination, and argue that the relationship between angry rumination and hostile attribution bias may be mutual. Additionally, the results suggest that there may be a causal relation of different aggression-related cognitive factors.
The Coordination of Environmental Protection and Female Discrimination Based on the Concept of Affirmative Action
With the development of society, the chemical industry is expanding, and the hazy weather everywhere is becoming increasingly frequent, already affecting people’s lives and causing them to pay more attention to environmental issues. Therefore, this paper highlights the role of women in environmental protection by studying the coordination of environmental protection and female discrimination based on the concept of affirmative action. Through this study and a survey, we found that China has not yet realized that women’s participation in environmental protection plays a key role in improving the quality of our environment and the development of ecological civilization. However, we should clearly understand that environmental issues are not only personal, they are related to the survival and development of a country, and as a member of that country, both women and men should have the right and obligation to protect the environment. Therefore, this article discusses the concept and meaning of affirmative action and gender discrimination in the context of research on these concepts, discussing the problems and phenomena that women encounter in environmental protection. These include the system of women’s environmental protection, gender issues for women in society, and the unequal treatment from the Government based on some studies. Through the study and analysis of the system of women’s environmental protection, the role and position of women in this regard is summarized. Finally, it is suggested that, for the construction and development of ecological civilization in China, it is necessary to fully integrate ecological civilization into all aspects of society and pay attention to environmental protection issues. Therefore, we should pay attention to the role of women in environmental protection, provide corresponding policies, and actively encourage women to partake in environmental protection in order to build an environmentally friendly and resource-saving society together.
Neural basis of reward expectancy inducing proactive aggression
Proactive aggression refers to deliberate and unprovoked behavior, typically motivated by personal gain or expected reward. Reward expectancy is generally recognized as a critical factor that may influence proactive aggression, but its neural mechanisms remain unknown. We conducted a task-based functional magnetic resonance imaging (fMRI) experiment to investigate the relationship between reward expectancy and proactive aggression. 37 participants (20 females, mean age = 20.8 ± 1.42, age range = 18–23 years) completed a reward-harm task. In the experiment, reward valence expectancy and reward possibility expectancy were manipulated respectively by varying amounts (low: 0.5–1.5 yuan; high: 10.5–11.5 yuan) and possibilities (low: 10%–30%; high: 70%–90%) of money that participants could obtain by choosing to aggress. Participants received fMRI scans throughout the experiment. Brain activation regions associated with reward expectancy mainly involve the middle frontal gyrus, lingual gyrus, inferior temporal gyrus, anterior cuneus, caudate nucleus, inferior frontal gyrus, cingulate gyrus, anterior central gyrus, and posterior central gyrus. Associations between brain activation and reward expectancy in the left insula, left middle frontal gyrus, left thalamus, and right middle frontal gyrus were found to be related to proactive aggression. Furthermore, the brain activation regions primarily involved in proactive aggression induced by reward expectancy were the insula, inferior frontal gyrus, inferior temporal gyrus, pallidum, and caudate nucleus. Under conditions of high reward expectancy, participants engage in more proactive aggressive behavior. Reward expectancy involves the activation of reward- and social-cognition-related brain regions, and these associations are instrumental in proactive aggressive decisions.
Multimodal therapy strategies based on hydrogels for the repair of spinal cord injury
Spinal cord injury (SCI) is a serious traumatic disease of the central nervous system, which can give rise to the loss of motor and sensory function. Due to its complex pathological mechanism, the treatment of this disease still faces a huge challenge. Hydrogels with good biocompatibility and biodegradability can well imitate the extracellular matrix in the microenvironment of spinal cord. Hydrogels have been regarded as promising SCI repair material in recent years and continuous studies have confirmed that hydrogel-based therapy can effectively eliminate inflammation and promote spinal cord repair and regeneration to improve SCI. In this review, hydrogel-based multimodal therapeutic strategies to repair SCI are provided, and a combination of hydrogel scaffolds and other therapeutic modalities are discussed, with particular emphasis on the repair mechanism of SCI.