Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
5,779 result(s) for "Xia, Tian"
Sort by:
Method of Ideological and Political Teaching Resources in Universities Based on School-Enterprise Cooperation Mode
The personalized recommendation system influences the recommendation of ideological and political teaching resources in universities, resulting in a high MAE score. As a result, under the school-enterprise collaboration paradigm, this study proposes a customised recommendation approach for ideological and political teaching resources in colleges and universities. The ideological and political teaching resource bank is developed against the backdrop of the teaching paradigm that combines universities and businesses. Learners’ browsing data history is gathered to create a learning interest model for them. A hybrid collaborative filtering recommendation method was devised, and a recommendation engine was established by Taste component, taking into account individualised resource recommendation needs and information entropy weight distribution mode. When compared to previous techniques, the developed customised recommendation method considerably enhances the recommendation quality of instructional resources and reduces MAE by 29% and 34%, respectively.
Evaluating College Students’ Comprehensive Quality by the AHP Algorithm
For the full rank of appraisement, college students act a central party in the instructive fabric of colleges and universities. The common attribute teaching should settle the reciprocal expert valuation agreeing to the specifying goals of training. Establishing a practical and energetic system for appraising the extensive rank of college students is a topical valuable for investigation. This writing confers a mandate supported on Analytic Hierarchy Process (AHP) to exactly rank the compendious degree, college students, frame estimation indicators, calculative crushing, and generate rising wherefore to distinct mayor leagues. Taking the full attribute valuation of electronic computer greater combine, a college as a represent, the import and implementation of this precept are utter details. Through the analysis of the passable state of the thorough nature appraisement, college students, alluring Taiyuan University of Science and Technology as an instance, a large property valuation dummy was established with the assistance of analytic hierarchy outgrowth. A reasonable valuation of students foresees a notional base.
Chiral fermion reversal in chiral crystals
In materials chiral fermions such as Weyl fermions are characterized by nonzero chiral charges, which are singular points of Berry curvature in momentum space. Recently, new types of chiral fermions beyond Weyl fermions have been discovered in structurally chiral crystals CoSi, RhSi and PtAl. Here, we have synthesized RhSn single crystals, which have opposite structural chirality to the CoSi crystals we previously studied. Using angle-resolved photoemission spectroscopy, we show that the bulk electronic structures of RhSn are consistent with the band calculations and observe evident surface Fermi arcs and helical surface bands, confirming the existence of chiral fermions in RhSn. It is noteworthy that the helical surface bands of the RhSn and CoSi crystals have opposite handedness, meaning that the chiral fermions are reversed in the crystals of opposite structural chirality. Our discovery establishes a direct connection between chiral fermions in momentum space and chiral lattices in real space. Exotic chiral fermions beyond Weyl fermions have recently been discovered in a series of chiral crystals such as CoSi. Here, the authors report the evidences of chiral fermions in RhSn with opposite handedness compared to those observed in CoSi, where the structural chirality is also opposite.
USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma
Elevated de novo lipogenesis is considered to be a crucial factor in hepatocellular carcinoma (HCC) development. Herein, we identify ubiquitin-specific protease 22 (USP22) as a key regulator for de novo fatty acid synthesis, which directly interacts with deubiquitinates and stabilizes peroxisome proliferator-activated receptor gamma (PPARγ) through K48-linked deubiquitination, and in turn, this stabilization increases acetyl-CoA carboxylase (ACC) and ATP citrate lyase (ACLY) expressions. In addition, we find that USP22 promotes de novo fatty acid synthesis and contributes to HCC tumorigenesis, however, this tumorigenicity is suppressed by inhibiting the expression of PPARγ, ACLY, or ACC in in vivo tumorigenesis experiments. In HCC, high expression of USP22 positively correlates with PPARγ, ACLY or ACC expression, and associates with a poor prognosis. Taken together, we identify a USP22-regulated lipogenesis mechanism that involves the PPARγ-ACLY/ACC axis in HCC tumorigenesis and provide a rationale for therapeutic targeting of lipogenesis via USP22 inhibition. Different deubiquitinases are associated to cancer development. Here, the authors show that PPARgamma is stabilized by USP22-mediated deubiquitination leading to lipid accumulation and promoting hepatocellular carcinoma.
KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner
Most N6-methyladenosine (m 6 A) associated regulatory proteins (i.e., m 6 A writer, eraser, and reader proteins) are involved in the pathogenesis of various cancers, mostly in m 6 A-dependent manners. As a component in the m 6 A ‘writers’, KIAA1429 is reported to be an RNA-binding protein and involved in the m 6 A modification, mRNA splicing and processing. Till now, the functions of KIAA1429 in tumorigenesis and related mechanism have not been reported. In the present study, we found KIAA1429 was highly expressed in breast cancer tissues, but frequently down-regulated in non-cancerous breast tissues. The overall survival of breast cancer patients with high-expression KIAA1429 was significantly shorter than those with low-expression KIAA1429. Then, we demonstrated that KIAA1429 was associated with breast cancer proliferation and metastasis in vivo and in vitro. The potential targeting genes of KIAA1429 in breast cancer were identified by RNA immunoprecipitation sequencing. One of these genes is cyclin-dependent kinase 1 (CDK1), which plays an oncogenic role in cancers. Furthermore, we confirmed that KIAA1429 played its oncogenic role in breast cancer by regulating CDK1 by an m 6 A-independent manner. 5′-fluorouracil was found to be very effective in reducing the expression of KIAA1429 and CDK1 in breast cancer. These findings indicated that KIAA1429 could promote breast cancer progression and was correlated with pathogenesis. It may represent a promising therapeutic strategy on breast cancer, especially in combination with CDK1 treatment.
The double-edged roles of ROS in cancer prevention and therapy
Reactive oxygen species (ROS) serve as cell signaling molecules generated in oxidative metabolism and are associated with a number of human diseases. The reprogramming of redox metabolism induces abnormal accumulation of ROS in cancer cells. It has been widely accepted that ROS play opposite roles in tumor growth, metastasis and apoptosis according to their different distributions, concentrations and durations in specific subcellular structures. These double-edged roles in cancer progression include the ROS-dependent malignant transformation and the oxidative stress-induced cell death. In this review, we summarize the notable literatures on ROS generation and scavenging, and discuss the related signal transduction networks and corresponding anticancer therapies. There is no doubt that an improved understanding of the sophisticated mechanism of redox biology is imperative to conquer cancer.
Gut microbiota contributes to high-altitude hypoxia acclimatization of human populations
Background The relationship between human gut microbiota and high-altitude hypoxia acclimatization remains highly controversial. This stems primarily from uncertainties regarding both the potential temporal changes in the microbiota under such conditions and the existence of any dominant or core bacteria that may assist in host acclimatization. Results To address these issues, and to control for variables commonly present in previous studies which significantly impact the results obtained, namely genetic background, ethnicity, lifestyle, and diet, we conducted a 108-day longitudinal study on the same cohort comprising 45 healthy Han adults who traveled from lowland Chongqing, 243 masl, to high-altitude plateau Lhasa, Xizang, 3658 masl, and back. Using shotgun metagenomic profiling, we study temporal changes in gut microbiota composition at different timepoints. The results show a significant reduction in the species and functional diversity of the gut microbiota, along with a marked increase in functional redundancy. These changes are primarily driven by the overgrowth of Blautia A , a genus that is also abundant in six independent Han cohorts with long-term duration in lower hypoxia environment in Shigatse, Xizang, at 4700 masl. Further animal experiments indicate that Blautia A -fed mice exhibit enhanced intestinal health and a better acclimatization phenotype to sustained hypoxic stress. Conclusions Our study underscores the importance of Blautia A species in the gut microbiota’s rapid response to high-altitude hypoxia and its potential role in maintaining intestinal health and aiding host adaptation to extreme environments, likely via anti-inflammation and intestinal barrier protection.
Cross-species recognition of two porcine coronaviruses to their cellular receptor aminopeptidase N of dogs and seven other species
Porcine deltacoronavirus (PDCoV) and transmissible gastroenteritis coronavirus (TGEV), the two causative agents of porcine diarrhea, have been reported to be at risk of cross-species transmission, including to humans. However, the potential host range in which these two CoVs interact remains unclear. We screened 16 animal counterparts for porcine aminopeptidase N (APN), the receptor of PDCoV and TGEV, and found that APNs from eight of 17 animals could bind to the receptor-binding domains (RBDs) of PDCoV and TGEV. Furthermore, the animal APNs that could bind to the RBDs could mediate cellular infection by both viruses. Dog APN (dAPN) has been identified as the animal receptor with the highest capability to mediate the virus infection. We further resolved the complex structures of dAPN bound to the PDCoV RBD/TGEV RBD, respectively, establishing its divergent receptor-binding modes. We identified R325 of dAPN as an important residue in the PDCoV RBD-dAPN interaction, and found the central role of Q746 and T749 in dAPN in the interaction with the TGEV RBD. These findings provide the molecular basis of the potential cross-species transmission of these two porcine CoVs and shed light on future surveillance of these CoVs.
Preparation of Nb5+ Doped Na3V2(PO4)3 Cathode Material for Sodium Ion Batteries
Sodium-ion batteries (SIBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) due to the abundance and low cost of sodium resources. Cathode material plays a crucial role in the performance of sodium ion batteries determining the capacity, cycling stability, and rate capability. Na3V2(PO4)3 (NVP) is a promising cathode material due to its stable three-dimensional NASICON structure, but its discharge capacity is low and its decay is serious with the increase of cycle period. We focused on modifying NVP cathode material by coating carbon and doping Nb5+ ions for synergistic electrochemical properties of carbon-coated NVP@C as a cathode material. X-ray diffraction analysis was performed to confirm the phase purity and crystal structure of the Nb5+ doped NVP material, which exhibited characteristic diffraction peaks that matched well with the NASICON structure. Nb5+-doped NVP@C@Nbx materials were prepared using the sol–gel method and characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Raman and Brunauer -Emmett-Teller (BET) analysis. First-principles calculations were performed based on density functional theory. VASP and PAW methods were chosen for these calculations. GGA in the PBE framework served as the exchange-correlation functional. The results showed the NVP unit cell consisted of six NVP structural motifs, each containing octahedral VO6 and tetrahedral PO4 groups to form a polyanionomer [V2(PO4)3] along with the c-axis direction by PO4 groups, which had Na1(6b) and Na2(18e) sites. And PDOS revealed that after Nb doping, the d orbitals of the Nb atoms also contributed electrons that were concentrated near the Fermi surface. Additionally, the decrease in the effective mass after Nb doping indicated that the electrons could move more freely through the material, implying an enhancement of the electron mobility. The electrochemical properties of the Nb5+ doped NVP@C@Nb cathode material were evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge tests, electrochemical impedance spectroscopy (EIS), and X-ray photoelectric spectroscopy (XPS). The results showed that NVP@C@Nb0.15 achieved an initial discharge capacity as high as 114.27 mAhg−1, with a discharge capacity of 106.38 mAhg−1 maintained after 500 cycles at 0.5C, and the retention rate of the NVP@C@Nb0.15 composite reached an impressive 90.22%. NVP@C@Nb0.15 exhibited low resistance and high capacity, enabling it to create more vacancies and modulate crystal structure, ultimately enhancing the electrochemical properties of NVP. The outstanding performance can be attributed to the Nb5+-doped carbon layer, which not only improves electronic conductivity but also shortens the diffusion length of Na+ ions and electrons, as well as reduces volume changes in electrode materials. These preliminary results suggested that the as-obtained NVP@C@Nb0.15 composite was a promising novel cathode electrode material for efficient sodium energy storage.