Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Xie, Luoyingzi"
Sort by:
The role of CD4 + T cells in tumor and chronic viral immune responses
Immunotherapies are mainly aimed to promote a CD8 + T cell response rather than a CD4 + T cell response as cytotoxic T lymphocytes (CTLs) can directly kill target cells. Recently, CD4 + T cells have received more attention due to their diverse roles in tumors and chronic viral infections. In antitumor and antichronic viral responses, CD4 + T cells relay help signals through dendritic cells to indirectly regulate CD8 + T cell response, interact with B cells or macrophages to indirectly modulate humoral immunity or macrophage polarization, and inhibit tumor blood vessel formation. Additionally, CD4 + T cells can also exhibit direct cytotoxicity toward target cells. However, regulatory T cells exhibit immunosuppression and CD4 + T cells become exhausted, which promote tumor progression and chronic viral persistence. Finally, we also outline immunotherapies based on CD4 + T cells, including adoptive cell transfer, vaccines, and immune checkpoint blockade. Overall, this review summarizes diverse roles of CD4 + T cells in the antitumor or protumor and chronic viral responses, and also highlights the immunotherapies based on CD4 + T cells, giving a better understanding of their roles in tumors and chronic viral infections.
The histone methyltransferase EZH2 primes the early differentiation of follicular helper T cells during acute viral infection
Epigenetic modifications to histones dictate the differentiation of naïve CD4+ T cells into different subsets of effector T helper (TH) cells. The histone methyltransferase enhancer of zeste homolog 2 (EZH2) has been implicated in the mechanism regulating the differentiation of TH1, TH2 and regulatory T (Treg) cells. However, whether and how EZH2 regulates follicular helper T (TFH) cell differentiation remain unknown. Using a mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection, we observed abundant EZH2 expression and associated H3K27me3 modifications preferentially in the early committed virus-specific TFH cells compared to those in TH1 cells. Ablation of EZH2 in LCMV-specific CD4+ T cells leads to a selective impairment of early TFH cell fate commitment, but not late TFH differentiation or memory TFH maintenance. Mechanistically, EZH2 specifically stabilizes the chromatin accessibility of a cluster of genes that are important for TFH fate commitment, particularly B cell lymphoma 6 (Bcl6), and thus directs TFH cell commitment. Therefore, we identified the chromatin-modifying enzyme EZH2 as a novel regulator of early TFH differentiation during acute viral infection.
CD4+ T-cell epitope-based heterologous prime-boost vaccination potentiates anti-tumor immunity and PD-1/PD-L1 immunotherapy
BackgroundAntitumor therapeutic vaccines are generally based on antigenic epitopes presented by major histocompatibility complex (MHC-I) molecules to induce tumor-specific CD8+ T cells. Paradoxically, continuous T cell receptor (TCR) stimulation from tumor-derived CD8+ T-cell epitopes can drive the functional exhaustion of tumor-specific CD8+ T cells. Tumor-specific type-I helper CD4+ T (TH1) cells play an important role in the population maintenance and cytotoxic function of exhausted tumor-specific CD8+ T cells in the tumor microenvironment. Nonetheless, whether the vaccination strategy targeting MHC-II-restricted CD4+ T-cell epitopes to induce tumor-specific TH1 responses can confer effective antitumor immunity to restrain tumor growth is not well studied. Here, we developed a heterologous prime-boost vaccination strategy to effectively induce tumor-specific TH1 cells and evaluated its antitumor efficacy and its capacity to potentiate PD-1/PD-L1 immunotherapy.MethodsListeria monocytogenes vector and influenza A virus (PR8 strain) vector stably expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein-specific I-Ab-restricted CD4+ T cell epitope (GP61–80) or ovalbumin-specific CD4+ T cell epitope (OVA323-339) were constructed and evaluated their efficacy against mouse models of melanoma and colorectal adenocarcinoma expressing lymphocytic choriomeningitis virus glycoprotein and ovalbumin. The impact of CD4+ T cell epitope-based heterologous prime-boost vaccination was detected by flow-cytometer, single-cell RNA sequencing and single-cell TCR sequencing.ResultsCD4+ T cell epitope-based heterologous prime-boost vaccination efficiently suppressed both mouse melanoma and colorectal adenocarcinoma. This vaccination primarily induced tumor-specific TH1 response, which in turn enhanced the expansion, effector function and clonal breadth of tumor-specific CD8+ T cells. Furthermore, this vaccination strategy synergized PD-L1 blockade mediated tumor suppression. Notably, prime-boost vaccination extended the duration of PD-L1 blockade induced antitumor effects by preventing the re-exhaustion of tumor-specific CD8+ T cells.ConclusionCD4+ T cell epitope-based heterologous prime-boost vaccination elicited potent both tumor-specific TH1 and CTL response, leading to the efficient tumor control. This strategy can also potentiate PD-1/PD-L1 immune checkpoint blockade (ICB) against cancer.
Albendazole induces an anti-tumor effect and potentiates PD-L1 blockade immunotherapy
Background Previously, albendazole (ABZ) has been reported as an anti-parasitic drug rather than anti-tumor drug. Our study aim to investigate whether ABZ also has a potential anti-tumor effect by shaping the tumor immune microenvironment and interrogate whether ABZ could synergize with the PD-L1 blockade. Methods C57BL/6 mice (C57) were intravenously injected with B16F10-luciferase (B16-luc) cells to establish a lung metastatic melanoma model and subcutaneously inoculated with B16-luc cells to establish a subcutaneous tumor model. The tumor volume and tumor metastasis loci of the mice were measured by a vernier caliper and in vivo imaging. RNA sequencing was performed to analyze the different genes and pathways of immune cells in the tumors. Flow cytometry and immunofluorescence were used to analyze the different subsets of tumor-infiltrating immune cells. Results The results suggested that ABZ significantly inhibited lung melanoma metastasis with decreased fluorescence intensity and nodule score and mediated the regression of subcutaneous melanoma in mice with decreased tumor volume. Moreover, RNA sequencing results showed that ABZ regulated the gene expression levels and pathways of immune cells in the tumor microenvironment (TME). Meanwhile, flow cytometry and immunofluorescence showed that the number and percentage of CD8 + T cells, CD4 + T cells, and T H 1 cells were enhanced in tumors after ABZ treatment. Furthermore, the combination of ABZ and anti-PD-L1 treatment significantly potentiated anti-tumor efficacy in both lung metastasis and subcutaneous melanoma models and mediated an increase in the percentage of CD8 + T cells, CD4 + T cells, and T H 1 cells as compared to the control group. Conclusion ABZ inhibits melanoma growth and metastasis. Moreover, ABZ synergized with PD-L1 blockade mediates tumor regression.
Low-Dose Albendazole Inhibits Epithelial-Mesenchymal Transition of Melanoma Cells by Enhancing Phosphorylated GSK-3β/Tyr216 Accumulation
Albendazole (ABZ) is an effective broad-spectrum anthelmintic agent that has been widely used for humans and animals. Previous studies have reported that ABZ exhibits antitumor effects against melanoma and other different cancer types; however, it is unknown whether ABZ exerts the inhibitory effect against melanoma metastasis. In this study, we aimed to investigate the inhibitory effect of ABZ on melanoma cells. Through in vitro studies, we discovered that low-dose ABZ treatment significantly inhibited the migration and invasion, but not the proliferation, of A375 and B16-F10 cells in a dose-dependent manner. Further analysis revealed that ABZ treatment reduced the expression level of snail family transcriptional repressor 1 (Snail) in the cytoplasm and nucleus by decreasing the levels of phosphorylated AKT (pAKT) Ser473/GSK-3β (pGSK-3β) Ser9 and increasing pGSK-3β/Tyr216, resulting in a significant upregulation of E-cadherin and downregulation of N-cadherin and ultimately reversing the epithelial-mesenchymal transition (EMT) process of melanoma cells. In contrast, the continuous activation of AKT via transfected plasmids elevated the protein levels of pAKT Ser473/pGSK-3β Ser9 and Snail and antagonized the inhibitory action of ABZ. We also confirmed that ABZ treatment effectively inhibited the lung metastasis of melanoma in nude mice in vivo. Subsequent immunohistochemical analysis verified the decreased pAKT Ser473/pGSK-3β Ser9 and increased pGSK-3β/Tyr216 levels in ABZ-treated subcutaneous tumors. Therefore, our findings demonstrate that ABZ treatment can suppress the EMT progress of melanoma by increasing the pGSK-3β/Tyr216-mediated degradation of Snail, which may be used as a potential treatment strategy for metastatic melanoma.
Bcl6 Preserves the Suppressive Function of Regulatory T Cells during Tumorigenesis
During tumorigenesis, tumor infiltrating regulatory T (Treg) cells restrict the function of effector T cells in tumor microenvironment and thereby promoting tumor growth. The anti-tumor activity of effector T cells can be therapeutically unleashed, and is now being exploited for the treatment of various types of human cancers. However, the immune suppressive function of Treg cells remains a major hurdle to broader effectiveness of tumor immunotherapy. In this article, we reported that the deletion of Bcl6 specifically in Treg cells led to stunted tumor growth, which was caused by impaired Treg cell responses. Notably, Bcl6 is essential in maintaining the lineage stability of Treg cells in tumor microenvironment. Meanwhile, we found that the absence of follicular regulatory T (Tfr) cells, which is a result of Bcl6 deletion in Foxp3+ cells, was dispensable for tumor control. Importantly, the increased Bcl6 expression in Treg cells is associated with poor prognosis of human colorectal cancer and lymph node metastasis of skin melanoma. Furthermore, Bcl6 deletion in Treg cells exhibits synergistic effects with immune checkpoint blockade therapy. Collectively, these results indicate that Bcl6 actively participates in regulating Treg cell immune responses during tumorigenesis and can be exploited as a therapeutic target of anti-tumor immunity. Footnotes * Another TCGA analysis included; Several mistakes in Figure legends corrected; New result of Bcl6-RFP included in Figure1; 1 figure in Figure1 are moved to Supplementary Figure1; 2 figures in Supplementary Figure1 are moved to Figure1.