Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,359 result(s) for "Xie, Zhe"
Sort by:
Immunosuppressive tumor microenvironment and immunotherapy of hepatocellular carcinoma: current status and prospectives
Hepatocellular carcinoma (HCC) is a major health concern worldwide, with limited therapeutic options and poor prognosis. In recent years, immunotherapies such as immune checkpoint inhibitors (ICIs) have made great progress in the systemic treatment of HCC. The combination treatments based on ICIs have been the major trend in this area. Recently, dual immune checkpoint blockade with durvalumab plus tremelimumab has also emerged as an effective treatment for advanced HCC. However, the majority of HCC patients obtain limited benefits. Understanding the immunological rationale and exploring novel ways to improve the efficacy of immunotherapy has drawn much attention. In this review, we summarize the latest progress in this area, the ongoing clinical trials of immune-based combination therapies, as well as novel immunotherapy strategies such as chimeric antigen receptor T cells, personalized neoantigen vaccines, oncolytic viruses, and bispecific antibodies.
m6A-dependent biogenesis of circular RNAs in male germ cells
The majority of circular RNAs (circRNAs) spliced from coding genes contain open reading frames (ORFs) and thus, have protein coding potential. However, it remains unknown what regulates the biogenesis of these ORF-containing circRNAs, whether they are actually translated into proteins and what functions they play in specific physiological contexts. Here, we report that a large number of circRNAs are synthesized with increasing abundance when late pachytene spermatocytes develop into round and then elongating spermatids during murine spermatogenesis. For a subset of circRNAs, the back splicing appears to occur mostly at m 6 A-enriched sites, which are usually located around the start and stop codons in linear mRNAs. Consequently, approximately a half of these male germ cell circRNAs contain large ORFs with m 6 A-modified start codons in their junctions, features that have been recently shown to be associated with protein-coding potential. Hundreds of peptides encoded by the junction sequences of these circRNAs were detected using liquid chromatography coupled with mass spectrometry, suggesting that these circRNAs can indeed be translated into proteins in both developing (spermatocytes and spermatids) and mature (spermatozoa) male germ cells. The present study discovered not only a novel role of m 6 A in the biogenesis of coding circRNAs, but also a potential mechanism to ensure stable and long-lasting protein production in the absence of linear mRNAs, i.e., through production of circRNAs containing large ORFs and m 6 A-modified start codons in junction sequences.
A high-precision segmentation method based on UNet for disc cutter holder of shield machine
Visual positioning plays a pivotal role in enabling robotic disc cutter replacement for the shield machine. However, underground operational challenges—including low illumination, high dust concentrations, and irregular sand deposition on the surface of the disc cutter and its holder—severely compromise recognition accuracy. To address this, we propose a multi-mechanism enhanced UNet model for robust segmentation of the disc cutter holder under heterogeneous surface conditions. Experimental comparisons with mainstream semantic segmentation models demonstrate that the Res-UNet achieves superior training efficiency and segmentation accuracy. Ablation studies further reveal optimal performance when utilizing a hybrid loss function (dice loss + cross-entropy loss) paired with the Adam optimizer. By integrating attention mechanisms, we develop the Res-UNet-CA architecture, which achieves state-of-the-art metrics on independent test sets: accuracy (99.45%), precision (98.9%), recall (99.11%), F1-score (99%), and mIoU (98.63%). The Res-UNet-CA model significantly outperforms other semantic segmentation models in prediction quality, offering an innovative solution for shield machine disc cutter holder detection.
Data prediction model in wireless sensor networks based on bidirectional LSTM
The data collected by the wireless sensor nodes often has some spatial or temporal redundancy, and the redundant data impose unnecessary burdens on both the nodes and networks. Data prediction is helpful to improve data quality and reduce the unnecessary data transmission. However, the current data prediction methods of wireless sensor networks seldom consider how to utilize the spatial-temporal correlation among the sensory data. This paper has proposed a new data prediction method multi-node multi-feature (MNMF) based on bidirectional long short-term memory (LSTM) network. Firstly, the data quality is improved by quartile method and wavelet threshold denoising. Then, the bidirectional LSTM network is used to extract and learn the abstract features of sensory data. Finally, the abstract features are used in the data prediction by adopting the merge layer of the neural network. The experimental results show that the proposed MNMF model has better performance compared with the other methods in many evaluation indicators.
Spatial chromatin accessibility sequencing resolves high-order spatial interactions of epigenomic markers
As the genome is organized into a three-dimensional structure in intracellular space, epigenomic information also has a complex spatial arrangement. However, most epigenetic studies describe locations of methylation marks, chromatin accessibility regions, and histone modifications in the horizontal dimension. Proper spatial epigenomic information has rarely been obtained. In this study, we designed spatial chromatin accessibility sequencing (SCA-seq) to resolve the genome conformation by capturing the epigenetic information in single-molecular resolution while simultaneously resolving the genome conformation. Using SCA-seq, we are able to examine the spatial interaction of chromatin accessibility (e.g. enhancer–promoter contacts), CpG island methylation, and spatial insulating functions of the CCCTC-binding factor. We demonstrate that SCA-seq paves the way to explore the mechanism of epigenetic interactions and extends our knowledge in 3D packaging of DNA in the nucleus.
Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep
Background The full biosphere structure and functional exploration of the microbial communities of the Challenger Deep of the Mariana Trench, the deepest known hadal zone on Earth, lag far behind that of other marine realms. Results We adopt a deep metagenomics approach to investigate the microbiome in the sediment of Challenger Deep, Mariana Trench. We construct 178 metagenome-assembled genomes (MAGs) representing 26 phyla, 16 of which are reported from hadal sediment for the first time. Based on the MAGs, we find the microbial community functions are marked by enrichment and prevalence of mixotrophy and facultative anaerobic metabolism. The microeukaryotic community is found to be dominated by six fungal groups that are characterized for the first time in hadal sediment to possess the assimilatory and dissimilatory nitrate/sulfate reduction, and hydrogen sulfide oxidation pathways. By metaviromic analysis, we reveal novel hadal Caudovirales clades, distinctive virus-host interactions, and specialized auxiliary metabolic genes for modulating hosts’ nitrogen/sulfur metabolism. The hadal microbiome is further investigated by large-scale cultivation that cataloged 1070 bacterial and 19 fungal isolates from the Challenger Deep sediment, many of which are found to be new species specialized in the hadal habitat. Conclusion Our hadal MAGs and isolates increase the diversity of the Challenger Deep sediment microbial genomes and isolates present in the public. The deep metagenomics approach fills the knowledge gaps in structure and diversity of the hadal microbiome, and provides novel insight into the ecology and metabolism of eukaryotic and viral components in the deepest biosphere on earth.
Classification and characterization of hemocytes from two Asian horseshoe crab species Tachypleus tridentatus and Carcinoscorpius rotundicauda
In present study, transmission electron microscopy and flow cytometry were utilized to investigate the classification, characterization and immune functions of hemocytes from horseshoe crab, Tachypleus tridentatus and Carcinoscorpius rotundicauda . Three types of hemocytes were distinguished respectively: the granular cell, the semi-granular cell and the hyaline cell by transmission electron microscopy, while three hemocyte subpopulations (Gate 1 cell, Gate 2 cell, Gate 3 cell) were classified by flow cytometry. Hyaline cell was the major cell type with the highest nuclear-cytoplasmic ratio and granular cell and semi-granular cell showed lower ratios. Immune parameters of hemocytes in horseshoe crabs were investigated by flow cytometry. Different hemocyte subpopulations respond for diverse functions. Lysosomal contents and hemocyte mortality in Gate 3 cell subpopulation were higher than that in other subpopulations, while reactive oxygen species, phagocytosis and non-specific esterase, in Gate 1 cell subpopulation, were higher than those in other subpopulations. The hemocyte types between the two species had no significant differences in staining or morphology.
BIND&MODIFY: a long-range method for single-molecule mapping of chromatin modifications in eukaryotes
Epigenetic modifications of histones are associated with development and pathogenesis of disease. Existing approaches cannot provide insights into long-range interactions and represent the average chromatin state. Here we describe BIND&MODIFY, a method using long-read sequencing for profiling histone modifications and transcription factors on individual DNA fibers. We use recombinant fused protein A-M.EcoGII to tether methyltransferase M.EcoGII to protein binding sites to label neighboring regions by methylation. Aggregated BIND&MODIFY signal matches bulk ChIP-seq and CUT&TAG. BIND&MODIFY can simultaneously measure histone modification status, transcription factor binding, and CpG 5mC methylation at single-molecule resolution and also quantifies correlation between local and distal elements.
Pan-Cancer Analysis Reveals a Distinct Neutrophil Extracellular Trap-Associated Regulatory Pattern
Neutrophils form extracellular net-like structures called neutrophil extracellular traps (NETs). Emerging evidence has shown that cancer can induce NET formation; however, it is not fully understood how NETs influence cancer biology, and no consensus has been reached on their pro- or antitumor effects. A comprehensive analysis of the global NET-associated gene regulatory network is currently unavailable and is urgently needed. We systematically explored and discussed NET enrichment, NET-associated gene regulatory patterns, and the prognostic implications of NETs in approximately 8,000 patients across 22 major human cancer types. We identified NET-associated regulatory gene sets that we then screened for NET-associated regulatory patterns that might affect patient survival. We functionally annotated the NET-associated regulatory patterns to compare the biological differences between NET-related survival subgroups. A gene set variation analysis (GSVA) based on 23 major component genes was used to calculate a metric called the NET score. We found that the NET score was closely associated with many important cancer hallmarks, particularly inflammatory responses and epithelial-to-mesenchymal transition (EMT)-induced metastasis. Higher NET scores were related to poor immunotherapy response. Survival analysis revealed that NETs had diverse prognostic impacts among various cancer types. The NET-associated regulatory patterns linked to shorter or longer cancer patient survival were distinct from each other. Functional analysis revealed that more of the NET-associated regulatory genes linked to poor cancer survival were associated with extracellular matrix (ECM) remodeling and pan-cancerous risk factors. SPP1 was found to be highly expressed and correlated with NET formation in cancers with poor survival. We also found that the co-upregulation of NET formation and SPP1 expression was closely linked to increased EMT and poor survival, that SPP1 influenced NET-induced malignant capacity, and that SPP1 overproduction induced a robust formation of metastatic-promoting NETs. NETs were common across cancers but displayed a diverse regulatory pattern and outcome readouts in different cancer types. SPP1 is potentially the key to NET-related poor outcomes.
Quantum Secure Multi-Party Summation Using Single Photons
In this paper, we propose a secure multi-party summation based on single photons. With the help of a semi-honest third party, n participants can simultaneously obtain the summation result without revealing their secret inputs. Our protocol uses single photon states as the information carriers. In addition, each participant with secret input only performs simple single-particle operators rather than particle preparation and any complex quantum measurements. These features make our protocol more feasible to implement. We demonstrate the correctness and security of the proposed protocol, which is resistant to participant attack and outside attack. In the end, we compare in detail the performance of the quantum summation protocol in this paper with other schemes in terms of different indicators. By comparison, our protocol is efficient and easy to implement.