Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
76 result(s) for "Xu, Guoyun"
Sort by:
Genome-wide analysis of long noncoding RNAs in response to salt stress in Nicotiana tabacum
Background Long noncoding RNAs (lncRNAs) have been shown to play important roles in the response of plants to various abiotic stresses, including drought, heat and salt stress. However, the identification and characterization of genome-wide salt-responsive lncRNAs in tobacco ( Nicotiana tabacum L. ) have been limited. Therefore, this study aimed to identify tobacco lncRNAs in roots and leaves in response to different durations of salt stress treatment. Results A total of 5,831 lncRNAs were discovered, with 2,428 classified as differentially expressed lncRNAs (DElncRNAs) in response to salt stress. Among these, only 214 DElncRNAs were shared between the 2,147 DElncRNAs in roots and the 495 DElncRNAs in leaves. KEGG pathway enrichment analysis revealed that these DElncRNAs were primarily associated with pathways involved in starch and sucrose metabolism in roots and cysteine and methionine metabolism pathway in leaves. Furthermore, weighted gene co-expression network analysis (WGCNA) identified 15 co-expression modules, with four modules strongly linked to salt stress across different treatment durations (MEsalmon, MElightgreen, MEgreenyellow and MEdarkred). Additionally, an lncRNA-miRNA-mRNA network was constructed, incorporating several known salt-associated miRNAs such as miR156, miR169 and miR396. Conclusions This study enhances our understanding of the role of lncRNAs in the response of tobacco to salt stress. It provides valuable information on co-expression networks of lncRNA and mRNAs, as well as networks of lncRNAs-miRNAs-mRNAs. These findings identify important candidate lncRNAs that warrant further investigation in the study of plant-environment interactions.
Comprehensive analysis of the carboxylesterase gene reveals that NtCXE22 regulates axillary bud growth through strigolactone metabolism in tobacco
Carboxylesterases (CXE) are a class of hydrolytic enzymes with α/β-folding domains that play a vital role in plant growth, development, stress response, and activation of herbicide-active substances. In this study, 49 Nicotiana tabacum L. CXE genes (NtCXEs) were identified using a sequence homology search. The basic characteristics, phylogenetic evolution, gene structure, subcellular location, promoter cis -elements, and gene expression patterns of the CXE family were systematically analyzed. RNA-seq data and quantitative real-time PCR showed that the expression level of CXEs was associated with various stressors and hormones; gene expression levels were significantly different among the eight tissues examined and at different developmental periods. As a new class of hormones, strigolactones (SLs) are released from the roots of plants and can control the germination of axillary buds. NtCXE7 , NtCXE9 , NtCXE22 , and NtCXE24 were homologous to Arabidopsis SLs hydrolase AtCXE15 , and changes in their expression levels were induced by topping and by GR24 (a synthetic analogue of strigolactone). Further examination revealed that NtCXE22 -mutant ( ntcxe22 ) plants generated by CRISPR-Cas9 technology had shorter bud outgrowth with lower SLs content. Validation of NtCXE22 was also performed in NtCCD8 -OE plants (with fewer axillary buds) and in ntccd8 mutant plants (with more axillary buds). The results suggest that NtCXE22 may act as an efficient SLs hydrolase and affects axillary bud development, thereby providing a feasible method for manipulating endogenous SLs in crops and ornamental plants.
Effects of seed coating and priming with exogenous brassinosteroid on tobacco seed germination
Brassinosteroid (BR) is a hormone known for its crucial role in seed germination promotion. However, there is a limited understanding of potential application in tobacco seed. In this study, we investigated various active ingredients for seed coating to enhance tobacco seed germination. It revealed that seed coating with 0.0500 ppm BR and priming with 0.01 ppm BR significantly increased seed germination rates, especially in low-temperature conditions. In addition, the combined use BR with priming and seed coating exhibited a substantial improvement in seed germination rates and promoted seedling growth. Through transcriptional analysis, it found that BR treatment regulates the expression of genes associated with DNA synthesis, cell wall organization and glucan metabolic process involved in seed dormancy and seedling growth. Overall, these results provide valuable insights into the utilization of seed coating and priming techniques, particularly with the inclusion of BR, to enhance tobacco seed germination and facilitate seedling emergence.
Temporal transcriptome analysis reveals several key pathways involve in cadmium stress response in Nicotiana tabacum L
Tobacco has a strong cadmium (Cd) enrichment capacity, meaning that it can absorb large quantities from the environment, but too much Cd will cause damage to the plant. It is not yet clear how the plant can dynamically respond to Cd stress. Here, we performed a temporal transcriptome analysis of tobacco roots under Cd treatment from 0 to 48 h. The number of differentially expressed genes (DEGs) was found to change significantly at 3 h of Cd treatment, which we used to define the early and middle stages of the Cd stress response. The gene ontology (GO) term analysis indicates that genes related to photosynthesis and fatty acid synthesis were enriched during the early phases of the stress response, and in the middle phase biological process related to metal ion transport, DNA damage repair, and metabolism were enriched. It was also found that plants use precursor mRNA (pre-mRNA) processes to first resist Cd stress, and with the increasing of Cd treatment time, the overlapped genes number of DEGs and DAS increased, suggesting the transcriptional levels and post-transcriptional level might influence each other. This study allowed us to better understand how plants dynamically respond to cadmium stress at the transcriptional and post-transcriptional levels and provided a reference for the screening of Cd-tolerant genes in the future.
Genome-wide identification and characterization of NPF family reveals NtNPF6.13 involving in salt stress in Nicotiana tabacum
Proteins of the Nitrate Transporter 1/Peptide Transporter (NPF) family transport a diverse variety of substrates, such as nitrate, peptides, hormones and chloride. In this study, a systematic analysis of the tobacco ( Nicotiana tabacum ) NPF family was performed in the cultivated ‘K326’. In total, 143 NtNPF genes were identified and phylogenetically classified into eight subfamilies, NPF1 to NPF8, based on the classification of NPF families in other plant species. The chromosomal locations and structures of the NtNPF genes were analyzed. The expression profiles of NtNPF genes under NaCl stress were analyzed to screen the possible NPF genes involving in chloride regulation in tobacco. Most NtNPF6 genes responded to salt stress in the roots and leaves. The expression of NtNPF6.13 was significantly down-regulated after salt stress for 12h. The chloride content was reduced in the roots of ntnpf6.13 mutant. These findings support the participation of NtNPF6.13 in chloride uptake. Several other NtNPF genes that play potential roles in chloride metabolism of tobacco require further study.
Transcriptomic insights into the regulatory networks of chilling-induced early flower in tobacco (Nicotiana tabacum L.)
Appropriate timing of flowering is pivotal for tobacco, while chilling stress occurring at the seedling stage often undesirably leads to early flowering. However, the potential mechanism underlying chilling-induced early flowering remains unknown. Here, transcriptome sequencing was performed in tobacco with or without chilling at both seedling and budding stages. Chilling affected the expression of numerous genes at the seedling stage, while these dramatic expression changes were largely eliminated at the budding stage. A small number of genes related to metabolism, flower development, and stress tolerance continued to keep their altered expression patterns from the seedling stage to the budding stage. Many potential flowering-related genes involved in flowering pathways were identified and over half of them were differentially expressed. Functional analysis revealed that the down-regulation of NbXTH22 rendered tobacco less sensitive to chilling-induced early flowering. These results provide valuable resources for the investigation of flowering regulatory mechanisms and contribute to the genetic improvement of crops.
Reconstruction of the full-length transcriptome of cigar tobacco without a reference genome and characterization of anion channel/transporter transcripts
Background Cigar wrapper leaves are the most important raw material of cigars. Studying the genomic information of cigar tobacco is conducive to improving cigar quality from the perspective of genetic breeding. However, no reference genome or full-length transcripts at the genome-wide scale have been reported for cigar tobacco. In particular, anion channels/transporters are of high interest for their potential application in regulating the chloride content of cigar tobacco growing on coastal lands, which usually results in relatively high Cl − accumulation, which is unfavorable. Here, the PacBio platform and NGS technology were combined to generate a full-length transcriptome of cigar tobacco used for cigar wrappers. Results High-quality RNA isolated from the roots, leaves and stems of cigar tobacco were subjected to both the PacBio platform and NGS. From PacBio, a total of 11,652,432 subreads (19-Gb) were generated, with an average read length of 1,608 bp. After corrections were performed in conjunction with the NGS reads, we ultimately identified 1,695,064 open reading frames including 21,486 full-length ORFs and 7,342 genes encoding transcription factors from 55 TF families, together with 2,230 genes encoding long non-coding RNAs. Members of gene families related to anion channels/transporters, including members of the SLAC and CLC families, were identified and characterized. Conclusions The full-length transcriptome of cigar tobacco was obtained, annotated, and analyzed, providing a valuable genetic resource for future studies in cigar tobacco.
OsMSR3, a Small Heat Shock Protein, Confers Enhanced Tolerance to Copper Stress in Arabidopsis thaliana
Copper is a mineral element essential for the normal growth and development of plants; however, excessive levels can severely affect plant growth and development. Oryza sativa L. multiple stress-responsive gene 3 (OsMSR3) is a small, low-molecular-weight heat shock protein (HSP) gene. A previous study has shown that OsMSR3 expression improves the tolerance of Arabidopsis to cadmium stress. However, the role of OsMSR3 in the Cu stress response of plants remains unclear, and, thus, this study aimed to elucidate this phenomenon in Arabidopsis thaliana, to further understand the role of small HSPs (sHSPs) in heavy metal resistance in plants. Under Cu stress, transgenic A. thaliana expressing OsMSR3 showed higher tolerance to Cu, longer roots, higher survival rates, biomass, and relative water content, and accumulated more Cu, abscisic acid (ABA), hydrogen peroxide, chlorophyll, carotenoid, superoxide dismutase, and peroxidase than wild-type plants did. Moreover, OsMSR3 expression in A. thaliana increased the expression of antioxidant-related and ABA-responsive genes. Collectively, our findings suggest that OsMSR3 played an important role in regulating Cu tolerance in plants and improved their tolerance to Cu stress through enhanced activation of antioxidative defense mechanisms and positive regulation of ABA-responsive gene expression.
Identification and characterization of TMV-induced volatile signals in Nicotiana benthamiana: evidence for JA/ET defense pathway priming in congeneric neighbors via airborne (E)-2-octenal
Plants release a mixture of volatile compounds when subjects to environmental stress, allowing them to transmit information to neighboring plants. Here, we find that Nicotiana benthamiana plants infected with tobacco mosaic virus (TMV) induces defense responses in neighboring congeners. Analytical screening of volatiles from N. benthamiana at 7 days post inoculation (dpi) using an optimized SPME–GC–MS method showed that TMV triggers the release of several volatiles, such as (E)-2-octenal, 6-methyl-5-hepten-2-one, and geranylacetone. Exposure to (E)-2-octenal enhances the resistance of N. benthamiana plants to TMV and triggers the immune system with upregulation of pathogenesis-related genes, such as NbPR1a , NbPR1b , NbPR2 , and NbNPR1 , which are related to TMV resistance. Furthermore, (E)-2-octenal upregulates jasmonic acid (JA) that levels up to 400-fold in recipient N. benthamiana plants and significantly affects the expression pattern of key genes in the JA/ET signaling pathway, such as NbMYC2 , NbERF1 , and NbPDF1.2 , while the salicylic acid (SA) level is not significantly affected. Our results show for the first time that the volatile (E)-2-octenal primes the JA/ET pathway and then activates immune responses, ultimately leading to enhanced TMV resistance in adjacent N. benthamiana plants. These findings provide new insights into the role of airborne compounds in virus-induced interplant interactions.
OsSGL, a Novel DUF1645 Domain-Containing Protein, Confers Enhanced Drought Tolerance in Transgenic Rice and Arabidopsis
Drought is a major environmental factor that limits plant growth and crop productivity. Genetic engineering is an effective approach to improve drought tolerance in various crops, including rice ( ). Functional characterization of relevant genes is a prerequisite when identifying candidates for such improvements. We investigated OsSGL ( Stress tolerance and Grain Length), a novel DUF1645 domain-containing protein from rice. was up-regulated by multiple stresses and localized to the nucleus. Transgenic plants over-expressing or hetero-expressing conferred significantly improved drought tolerance in transgenic rice and , respectively. The overexpressing plants accumulated higher levels of proline and soluble sugars but lower malondialdehyde (MDA) contents under osmotic stress. Our RNA-sequencing data demonstrated that several stress-responsive genes were significantly altered in transgenic rice plants. We unexpectedly observed that those overexpressing rice plants also had extensive root systems, perhaps due to the altered transcript levels of auxin- and cytokinin-associated genes. These results suggest that the mechanism by which confers enhanced drought tolerance is due to the modulated expression of stress-responsive genes, higher accumulations of osmolytes, and enlarged root systems.