Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
702 result(s) for "Xu, Haiying"
Sort by:
A noncoding RNA transcribed from the AGAMOUS (AG) second intron binds to CURLY LEAF and represses AG expression in leaves
Dispersed H3K27 trimethylation (H3K27me3) of the AGAMOUS (AG) genomic locus is mediated by CURLY LEAF (CLF), a component of the Polycomb Repressive Complex (PRC) 2. Previous reports have shown that the AG second intron, which confers AG tissue-specific expression, harbors sequences targeted by several positive and negative regulators. Using RACE reverse transcription polymerase chain reaction, we found that the AG intron 2 encodes several noncoding RNAs. RNAi experiment showed that incRNA4 is needed for CLF repressive activity. AG-incRNA4 RNAi lines showed increased leaf AG mRNA levels associated with a decrease of H3K27me3 levels; these plants displayed AG overexpression phenotypes. Genetic and biochemical analyses demonstrated that the AG-incRNA4 can associate with CLF to repress AG expression in leaf tissues through H3K27me3-mediated repression and to autoregulate its own expression level. The mechanism of AG-incRNA4-mediated repression may be relevant to investigations on tissue-specific expression of Arabidopsis MADS-box genes.
Closed-Loop Control of Droplet Transfer in Electron-Beam Freeform Fabrication
In the process of electron-beam freeform fabrication deposition, the surface of the deposit layer becomes rough because of the instability of the feeding wire and the changing of the thermal diffusion condition. This will make the droplet transfer distance change in the deposition process, and the droplet transfer cannot always be stable in the liquid bridge transfer state. It is easy to form a large droplet or make wire and substrate stick together, which makes the deposition quality worsen or even interrupts the deposition process. The current electron-beam freeform fabrication deposition is mostly open-loop control, so it is urgent to realize the real-time and closed-loop control of the droplet transfer and to make it stable in the liquid bridge transfer state. In this paper, a real-time monitoring method based on machine vision is proposed for the droplet transfer of electron-beam freeform fabrication. The detection accuracy is up to ± 0.08 mm. Based on this method, the measured droplet transfer distance is fed back to the platform control system in real time. This closed-loop control system can stabilize the droplet transfer distance within ± 0.14 mm. In order to improve the detection stability of the whole system, a droplet transfer detection algorithm suitable for this scenario has been written, which improves the adaptability of the droplet transfer distance detection method by means of dilatation/erosion, local minimum value suppression, and image segmentation. This algorithm can resist multiple disturbances, such as spatter, large droplet occlusion and so on.
Global loss of mountain vegetated landscapes and its impact on biodiversity conservation
Accelerating human encroachment and natural disasters are causing substantial loss of mountain vegetated landscapes, threatening biodiversity conservation and ecosystem sustainability. The global-scale quantification of the magnitude, variability and drivers of the loss of mountain vegetated landscapes, and its impact on biodiversity conservation, however, has been lacking. Here, we combine global datasets on mountain boundaries, land use, natural disasters, and protected and biodiversity hotspots together with large-scale earth observation data to quantify global mountain vegetated landscape loss, as well as its variation and potential drivers from 2000 to 2020. Overall, we find widespread but uneven mountain vegetated landscape loss across the globe, of which ∼89% can be attributed to human expansion, primarily agriculture, with small contributions of human settlement growth and mining. About ∼11% of mountain vegetated landscape loss can be attributed to natural disasters, primarily through drought. We also observe that ~56% of global mountain vegetated landscape loss occurred within protected areas and in areas with high richness of threatened mountain-occurring species, indicating the urgency of improving protection in these areas of loss. Our results can help formulate conservation strategies and contribute to sustainable development. This study reports widespread loss of mountain vegetation worldwide from 2000 to 2020, with ∼89% attributable to human expansion, primarily agriculture. Over half of this loss occurred within protected areas and other biodiversity-rich areas, threatening conservation efforts.
Novel stable QTLs identification for berry quality traits based on high-density genetic linkage map construction in table grape
Background Aroma, berry firmness and berry shape are three main quality traits in table grape production, and also the important target traits in grapevine breeding. However, the information about their genetic mechanisms is limited, which results in low accuracy and efficiency of quality breeding in grapevine. Mapping and isolation of quantitative trait locus (QTLs) based on the construction of genetic linkage map is a powerful approach to decipher the genetic determinants of complex quantitative traits. Results In the present work, a final integrated map consisting of 3411 SLAF markers on 19 linkage groups (LGs) with an average distance of 0.98 cM between adjacent markers was generated using the specific length amplified fragment sequencing (SLAF-seq) technique. A total of 9 significant stable QTLs for Muscat flavor, berry firmness and berry shape were identified on two linkage groups among the hybrids analyzed over three consecutive years from 2016 to 2018. Notably, new stable QTLs for berry firmness and berry shape were found on LG 8 respectively for the first time. Based on biological function and expression profiles of candidate genes in the major QTL regions, 3 genes ( VIT_08s0007g00440 , VIT_08s0040g02740 and VIT_08s0040g02350 ) related to berry firmness and 3 genes ( VIT_08s0032g01110 , VIT_08s0032g01150 and VIT_08s0105g00200 ) linked to berry shape were highlighted. Overexpression of VIT_08s0032g01110 in transgenic Arabidopsis plants caused the change of pod shape. Conclusions A new high-density genetic map with total 3411 markers was constructed with SLAF-seq technique, and thus enabled the detection of narrow interval QTLs for relevant traits in grapevine. VIT_08s0007g00440 , VIT_08s0040g02740 and VIT_08s0040g02350 were found to be related to berry firmness, while VIT_08s0032g01110 , VIT_08s0032g01150 and VIT_08s0105g00200 were linked to berry shape.
Online Measurement of Deposit Surface in Electron Beam Freeform Fabrication
In the process of electron beam freeform fabrication (EBF3), due to the continuous change of thermal conditions and variability in wire feeding in the deposition process, geometric deviations are generated in the deposition of each layer. In order to prevent the layer-by-layer accumulation of the deviation, it is necessary to perform online geometry measurement for each deposition layer, based on which the error compensation can be done for the previous deposition layer in the next deposition layer. However, the traditional three-dimensional reconstruction method that employs structured laser cannot meet the requirements of long-term stable operation in the manufacturing process of EBF3. Therefore, this paper proposes a method to measure the deposit surfaces based on the position information of electron beam speckle, in which an electron beam is used to bombard the surface of the deposit to generate the speckle. Based on the structured information of the electron beam in the vacuum chamber, the three-dimensional reconstruction of the surface of the deposited parts is realized without need of additional structured laser sensor. In order to improve the detection accuracy, the detection error is theoretically analyzed and compensated. The absolute error after compensation is smaller than 0.1 mm, and the precision can reach 0.1%, which satisfies the requirements of 3D reconstruction of the deposited parts. An online measurement system is built for the surface of deposited parts in the process of electron beam freeform fabrication, which realizes the online 3D reconstruction of the surface of the deposited layer. In addition, in order to improve the detection stability of the whole system, the image processing algorithm suitable for this scene is designed. The reliability and speed of the algorithm are improved by ROI extraction, threshold segmentation, and expansion corrosion. In addition, the speckle size information can also reflect the thermal conditions of the surface of the deposited parts. Hence, it can be used for online detection of defects such as infusion and voids.
Basal cell carcinoma: PD-L1/PD-1 checkpoint expression and tumor regression after PD-1 blockade
Monoclonal antibodies that block immune regulatory proteins such as programmed death-1 (PD-1) have demonstrated remarkable efficacy in controlling the growth of multiple tumor types. Unresectable or metastatic basal cell carcinoma, however, has largely gone untested. Because PD-Ligand-1 (PD-L1) expression in other tumor types has been associated with response to anti-PD-1, we investigated the expression of PD-L1 and its association with PD-1 expression in the basal cell carcinoma tumor microenvironment. Among 40 basal cell carcinoma specimens, 9/40 (22%) demonstrated PD-L1 expression on tumor cells, and 33/40 (82%) demonstrated PD-L1 expression on tumor-infiltrating lymphocytes and associated macrophages. PD-L1 was observed in close geographic association to PD-1+ tumor infiltrating lymphocytes. Additionally, we present, here, the first report of an objective anti-tumor response to pembrolizumab (anti-PD-1) in a patient with metastatic PD-L1 (+) basal cell carcinoma, whose disease had previously progressed through hedgehog pathway-directed therapy. The patient remains in a partial response 14 months after initiation of therapy. Taken together, our findings provide a rationale for testing anti-PD-1 therapy in patients with advanced basal cell carcinoma, either as initial treatment or after acquired resistance to hedgehog pathway inhibition.
Multidimensional, quantitative assessment of PD-1/PD-L1 expression in patients with Merkel cell carcinoma and association with response to pembrolizumab
Background We recently reported a 56% objective response rate in patients with advanced Merkel cell carcinoma (MCC) receiving pembrolizumab. However, a biomarker predicting clinical response was not identified. Methods Pretreatment FFPE tumor specimens ( n  = 26) were stained for CD8, PD-L1, and PD-1 by immunohistochemistry/immunofluorescence (IHC/IF), and the density and distribution of positive cells was quantified to determine the associations with anti-PD-1 response. Multiplex IF was used to test a separate cohort of MCC archival specimens ( n  = 16), to identify cell types expressing PD-1. Results Tumors from patients who responded to anti-PD-1 showed higher densities of PD-1+ and PD-L1+ cells when compared to non-responders (median cells/mm 2 , 70.7 vs. 6.7, p  = 0.03; and 855.4 vs. 245.0, p  = 0.02, respectively). There was no significant association of CD8+ cell density with clinical response. Quantification of PD-1+ cells located within 20 μm of a PD-L1+ cell showed that PD-1/PD-L1 proximity was associated with clinical response ( p  = 0.03), but CD8/PD-L1 proximity was not. CD4+ and CD8+ cells in the TME expressed similar amounts of PD-1. Conclusions While the binomial presence or absence of PD-L1 expression in the TME was not sufficient to predict response to anti-PD-1 in patients with MCC, we show that quantitative assessments of PD-1+ and PD-L1+ cell densities as well as the geographic interactions between these two cell populations correlate with clinical response. Cell types expressing PD-1 in the TME include CD8+ T-cells, CD4+ T-cells, T regs , and CD20+ B-cells, supporting the notion that multiple cell types may potentiate tumor regression following PD-1 blockade.
Urban Construction Waste Recycling Path: Robust Optimization
The world produces a huge amount of urban construction waste each year. Scientific planning of the construction waste recycling path is urgently needed to improve the recycling of construction waste. Existing construction waste recycling models do not pay sufficient attention to the uncertainty of the recycling quantity, which limits their ability to provide support for solving practical problems. The purpose of this paper is to solve the problem of uncertain recycling quantities in optimizing the urban construction waste recycling path. Thus, this paper first builds a recycling model for a deterministic environment with the economic objective as the decision criterion and the transportation flow, construction waste treatment capacity and capability, and environmental and social impact as the constraints. Then, a robust optimization method is adopted to optimize the deterministic model for the uncertainty of the recycling quantity. The data of this paper are from Nanjing, China. The validity of the model and the evolution of the recycling path are tested based on the data of Nanjing. The findings of this paper are as follows: Firstly, the robust model is cost-effective in the face of uncertainty in supply. Secondly, the robust model has greater total treatment capacity. Even in the worst-case scenario, it can guarantee a higher treatment capacity. Thirdly, both models follow the proximity principle which reduces the transportation costs and only slowly increases the total cost of the robust model. This paper provides a scientific and convenient tool to plan the recycling path of construction waste in large cities.
Integrated Evaluations of Resource and Environment Carrying Capacity of the Huaihe River Ecological and Economic Belt in China
The evaluations of resource and environment carrying capacity and territorial development suitability, also referred to as “double evaluations”, have been taken by China as an important direction in territorial space planning. Based on the evaluation of resource and environment carrying capacity, the double evaluations can contribute to protecting ecological safety and territorial safety and promoting regional sustainable development. The focus of this study was to integratedly evaluate the resource and environment carrying capacity of the Huaihe River Ecological and Economic Belt. First, the overall weights of the factors at the dimension level and the index level in the established integration evaluation system were calculated with the fuzzy analytical hierarchy process (FAHP) method; and then, using the linear weighted function, the overall resource and environment carrying capacities of 25 cities in the belt were calculated. On that basis, the resource and environment carrying capacity evaluation model was established. Through model analysis, this study comprehensively investigated the resource and environment carrying capacity of the Huaihe River Eco-economic Belt and provided a foundation for the future territorial space planning and layout of the Huaihe River Eco-economic Belt.
B7-H3 Promotes Pathogenesis of Autoimmune Disease and Inflammation by Regulating the Activity of Different T Cell Subsets
B7-H3 is a cell surface molecule in the immunoglobulin superfamily that is frequently upregulated in response to autoantigens and pathogens during host T cell immune responses. However, B7-H3's role in the differential regulation of T cell subsets remains largely unknown. Therefore, we constructed a new B7-H3 deficient mouse strain (B7-H3 KO) and evaluated the functions of B7-H3 in the regulation of Th1, Th2, and Th17 subsets in experimental autoimmune encephalomyelitis (EAE), experimental asthma, and collagen-induced arthritis (CIA); these mouse models were used to predict human immune responses in multiple sclerosis, asthma, and rheumatoid arthritis, respectively. Here, we demonstrate that B7-H3 KO mice have significantly less inflammation, decreased pathogenesis, and limited disease progression in both EAE and CIA mouse models when compared with littermates; these results were accompanied by a decrease in IFN-γ and IL-17 production. In sharp contrast, B7-H3 KO mice developed severe ovalbumin (OVA)-induced asthma with characteristic infiltrations of eosinophils in the lung, increased IL-5 and IL-13 in lavage fluid, and elevated IgE anti-OVA antibodies in the blood. Our results suggest B7-H3 has a costimulatory function on Th1/Th17 but a coinhibitory function on Th2 responses. Our studies reveal that B7-H3 could affect different T cell subsets which have important implications for regulating pathogenesis and disease progression in human autoimmune disease.